BBS ‘l“] COPENHAGEN BUSINESS SCHOOL

N HANDELSHOJSKOLEN

HPG & PARALLEL PROGRANIMING IN PYTHON

New cloud computing possibilities for researchers & students

EEEEEEEEEEEEEEEEEEEE

Kristoffer Gulmark Poulsen & Lars Nondal e (L
CBS ‘EQUIS mm KPAMBA (D cEMS uﬁ

About You?

5. In particular UCloud?

GBS i

What type and size of data do you work with?

What programming languages do you work in (e.g. R, Python..)?

Are you familiar with parallel programming?

Are you familiar with high performance computing

Structured Data @ Unstructured Data

Can be displayed
in rows, columns and
relational databases

Numbers, dates
and strings

Estimated 20% of
enterprise data (Gartner)

Requires less storage

Easier to manage
and protect with
legacy solutions

Cannot be displayed
in rows, columns and
relational databases

Images, audio, video,
word processing files,
e-mails, spreadsheets

Bl
S =1F
Estimated 80% of
enterprise data (Gartner)

Requires more storage
More difficult to
manage and protect
with legacy solutions

Program Today

Basic theory of parallel programming

Parallel programming basics within Python

Parallelization of a ML models scikit-learn framework.

Distributed parallelization on a SLURM Cluster.

https://cbs-hpc.github.io/

GBS i

https://cbs-hpc.github.io/

What is High Performance GComputing (supercomputer)?

= Network of processors, hard drives & other hardware

Hardware
= Core: Processing unit on a single machine.
= Node: A single machine.

= Cluster: Network of multiple nodes.

RAM —

GBS i

Storage

Accessing an HPGC...

;\] mmE
0] H B
P -] mm B
‘ Login Nodes [l [] . [[l .
Log in Access to assigned
(ID + Password) compute & storage nodes

GBS i

Accessing an HPGC...

= Your assigned resources (HW + SW) can be used from your PC

x
I .

GBS i

When HPC might be for you

= Applying ML/AI

= Running simulation and resampling techniques
= Working with large datasets

= My laptop runs out of memory

= My workflow is running very slow

GBS i

National HPG facilities

1(SD
* Collaboration between Universities and DeiC (Danish e-Infrastructure Cooperation) e 3L (S0, (ealdl

Interactive HPC

1111

LA

https://www.deic.dk/en/supercomputing/national-hpc-facilities

GBS i

https://cloud.sdu.dk/
https://genome.au.dk/
https://docs.hpc-type3.sdu.dk/
https://www.lumi-supercomputer.eu/may-we-introduce-lumi/
https://www.deic.dk/en/supercomputing/national-hpc-facilities

Type 1: Interactive HPG

Cloud-based (HPC) systems (e.g. similar to google colab, amazon aws)
User friendly with Graphical User Interface (GUI).

Lots of preinstalled software (R, Python, Stata & Matlab)
Collaborative projects — work & share files with others

GDPR-Compliant

Access with university credentials from https://cloud.sdu.dk

e xxx@student.cbs.dk
o xxx@cbs.dk

e 1000 DKK Free credit.

GBS i

Type 1 (SDU, AAU)
Interactive HPC

https://cloud.sdu.dk/
https://cloud.sdu.dk/
mailto:xxx@student.cbs.dk
mailto:xxx@cbs.dk

Type 1: SDU

* CPU resources
* GUI based
* Wide range of applications

* Slurm and Spark Cluster

Name

@ ul-standard-1
@ ul-standard-2
@ ul-standard-4
@ ul-standard-8
@ ul-standard-16
@ ul-standard-32

@ ul-standard-64

GBS i

vCPU

16

32

64

Type 1 (SDU, AAU)

Interactive HPC

Memory (GB) GPU

—— DeiC Interactive HPC (SDU): ul-standard

6

12

24

48

96

192

384

Price

0,07 DKK/hour
0,16 DKK/hour
0,33 DKK/hour
0,67 DKK/hour
1,36 DKK/hour
2,74 DKK/hour

5,49 DKK/hour

10

https://cloud.sdu.dk/

support at GBS

Local CBS support
= Lars Nondal & Kristoffer Gulmark Poulsen
= Contact: rdm@cbs.dk or directly to Kristoffer (kgp.lib@chs.dk)

User support: Advising and granting resources, technical problems.
Consultation: Code development etc.

Teaching: “High Performance Computing”, “HPC & Parallel Programming in R and Python” and “Train your ML/Al Model
on GPUs".

Documentation and Tutorials: https://cbs-hpc.github.io/

GBS i

mailto:rdm@cbs.dk
mailto:kgp.lib@cbs.dk
https://cbs.libcal.com/event/4086280
https://cbs.libcal.com/event/4086211
https://cbs.libcal.com/event/4086197
https://cbs.libcal.com/event/4086279
https://cbs.libcal.com/event/4086279
https://cbs-hpc.github.io/

oud Dashboard

Search files and applications

Files
& News * Favorites ¥ Recent runs A Recent notifications N2 0 Resource allocations
Projects Inf .
nformation v affaff 3 months Type 1- CBS DeiC Interactive HPC 44,980 56 DKK
Resources Maintenance on the DeiC Interactive 08:00 — W ounave received anew grant application to review. (AAU) [uc-general s
A HPC (AAU) provider 13/03/2023 X machine_01 e
[] pps R o momns e EE DeiC Interactive HPC
The 'DeiC Interactive HPC (AAU)' provider will be . W e received anew grant application to review. (AAU) [uc-t4 494.528,06 DK
ﬁ Runs performing scheduled maintenance on 21/03/23 x machine_01 5 months
between 09:00-15:00. This might cause some) Ubuntu (Vituat Machine) 20.04 — DeiC Interactive HPC 149.494 22 DKK
disruption to the service. This maintenance only affects No favorites testing R - -« v:fneave R e 2t ety iCetIor e e (SDU) f ul-standard !
the following machine types: As you as add favorites, they will appear here. X Ubuntu (Virtual Machine) 20,04 o mene .)
DeiC Interactive HPC .
- testing Information (SDU) / sa5-9-4-cbs 9997 License(s)
" ue g:;ﬂal Errois X o i o 2 o months 0 EmilBegtrup-Bright#8222 has changed rale to Admin in project...
. :z_; i DeiC Interactive HPC
voat 5 months Information 0 (SDU) / STATA-MP17- 997 License(s)
B 0 StefanBerndMBhler#0398 has changed role to Admin in projec. .. CcBS
i = LAC_live_test 5 s
View more © JupyterLab 3.4.5 & months . DeiC Interactive HPC
Information .
O PeterMistol#7044 has changed role to Admin in project: MSc P... (SDU) f STATA16- 997 License(s)
CBS-TEST
Information G ;
Q oo hes changed role to User in project: MSc Pr... DeiC Interactive HPC 97 Public IP(s)
(SDU) / public-ip
Z Resource usage «f Grant applications # Providers Show all
Past 30 days R .
; - a DeiC Interactive HPC (SDU)
4 Compute 114,05 DKK No recent outgoing applications

Apply for resources to use storage and compute on

UCloud.
Apply fi sources

DeiC Interactive HPC (AAU)

https://cloud.sdu.dk/app/dashboard

@ Type 1/Type 1- CBS
[KristofferGulmarkp...
N UCloud Docs

c Bs i‘! @ SDU Data Protection

https://cloud.sdu.dk/app/dashboard

Why is it taking so long?

Computation can be slow for one of three reasons:

L_omjer CPU burst
. . . . Shorter I/0O Ope_ra‘tion
CPU bound when computational time is restricted by processor.

1/0 bound when reading from and to disk/database is limiting factor. cPU Bost] [[CPU Bast | V[CPUBast | [[CPU Burst]

Memory bound when limited by the memory required to hold the working data.

Shorter CPU burst Longer I/O Operations

CPU CPU CPU
burst burst burst

GBS i

14

Parallel Programming

Sequential Computing Parallel Computing
= Single core processor = Multi-core processor
= Multiple tasks which runs overlapping but not at same time = Multiple tasks which runs overlapping.
= Synchronous tasks . = Synchronous/Asynchronous
Sequential
Processing
Start
Parallel
Processing
L
Iteration 1 ST
L
Iteration 2 Iteration 1 Iteration 2 [teration 3
| \/
! .
teration 3 End
L
End

GBS i

15

Parallel Programming

Sequential Computing
= Single core processor
= Multiple tasks which runs overlapping but not at same time.

= Synchronous tasks

GBS i

Parallel Computing
= Multi-core processor

= Multiple tasks which runs overlapping.

= Synchronous/Asynchronous

S e

S e

CHOP

STIR

16

Parallel Programming

Concurrency Parallelism

= Executing multiple tasks at the same time but not necessarily = One task is split into subtasks and run in parallel at the exact same time.

simultaneously. = Run multiple tasks in in parallel on multiple CPUs at the exact same time

T k> — CHOP

SR - STIR
GBS i

17

Parallel Programming

Data Parallelism

by

Task || Task || Task || Task || Task || Task
1 1 1 1 1 1

HENEE

W

Aggregation
Task

.

GBS i

Input Data

Parallel
Processing

Result Data

Task Parallelism

@y () G

~.

Aggregation
Task

)

Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Main Memory

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Network Main Memory
Explicit Parallelism - is written into the source code by the Programmer.

Main Memory

GBS i

Terminology

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.
Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.
Thread: Path of execution within a single process.

Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

Compiled - All code is converted to machine code and then program is executed. (C & Fortran)

GBS i

a

Process

Code

N

Data

Threads

21

SIMD & M“Iti'Threading SIMD | Instruction pool

Single Instruction, Multiple Data (SIMD)

= single thread/processor where each processing unit (PU) performs the same instruction on

different data.

Data pool

=
(=
>
—
(@]
=
o
>

= Vectorization.

(

Multi-Threading

/ Process \

. Iti-threaded
= Threads are multiple paths of execution within a single process. [] [. Multthreaded)
Code Data

N
Code] [Data
v

~

J

= Appears as a single process.

~

Threads Threads

Single instruction, multiple threads (SIMT) \)

A

/)

top - 15:12:02 up 2 days, 54 min, O users, load average: 6.42, 6.45, 6.45
. . Tasks: 18 total, 1 running, 9 sleeping, @ stopped, 0 zombie
Python and R are examples of single-threaded programming languages. ACou(s): 110 us, .3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0hi, .85, 0. st
MiB Mem : 385583.7 total, 193583.0 free, 102124.0 used, 89876.6 buff/cache
MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.8 avail Mem

PID USER I VIRT RES SHR %CPU MEM TIME+ COMMAND
243 ucloud 20 0 3970788 962704 74288 @278.1 WO.2 0:44.50 rsession
202 rstudio+ 20 O 182200 18268 14724 i 8.0 0:01.00 rserver
1 ucloud 200 0 6896 3428 3196 S 0.0 0.0 0:00.05 start-rstu+
7 root 20 0 10420 4920 4376 S 0.0 0.0 0:00.00 sudo
8 root 20 0 200 4 @GS 0.0 0.0 0:00.01 sé-svscan
37 root 20 0 200 4 6S 0.0 0.0 0:00.00 s6-supervi+
198 root 20 0O 200 4 @GS 0.0 0.0 0:00.00 sé6-supervi+
K\ 265 ucloud 206 0 2492 580 512§ 0.6 8.6 08:00.01 sh
" 271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 hash
‘ 273 ucloud 20 @ 10832 3824 3316R 0.0 8.0 0:00.12 top

22

SIMD & Multi-Threading in Python and R

SIMT is achieved in several ways:

Through external libraries
= Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.
= Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.
= NumPy, SciPy and Pandas

= built-in R functions

top - 15:12:02 up 2 days, 54 min, 0 users, load average: 6.42, 6.45, 6.45

“Static Compilers” File Edit Code View Plots Session Build Debug [, 19 tora1, 1 running, 9 sleeping, @ stopped, B zombie
. . . o .- O 2 . b Go to file/functior %Cpu(s): 11.0 us, 0.3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.8 st
OpenMP/GCC (GNU Compiler Collection) MiB Mem : 385583.7 total, 193583.8 free, 102124.0 used, B9876.6 buff/cache
« Rcpp Console Terminal Background Jobs MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.0 avail Mem
R4.2.1 . jwork/
- Cython N PID USER I VIRT RES SHR ' XCPU MEM TIME+ COMMAND
A (: matrix(rhorm(n*n), ncol=n, nrow=n) 243 ucloud 20 O 3970780 962704 0.2 0 rsession
B <- matrix(rnorm(n*n), ncol=n, nrow=n) 202 rstudio+ 20 0 182200 18268 0.6 o: rserver
C o¢- B Y B 1 ucloud 20 B 689 3428 31965 0.0 0.0 0:00.05 start-rstu+
: : . 7 root 20 0 10420 4920 4376 S 0.0 0.6 0:00.00 sudo
Dynamlc/JIT Compllers. 8 root 20 0 200 4 S 0.0 0.0 0:00.01 sé-svscan
« Numba 37 root 20 0 200 4 ©S 0.0 0.0 0:00.00 sé-supervi+
198 root 2 0 200 4 S 0.0 0.0 0:00.00 sé-supervi+
= JITR 265 ucloud 20 0 2492 580 512 S 0.0 0.8 0:00.01 sh
271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 bash
273 ucloud 20 0 10032 3824 3316R 6.0 0.0 0:00.12 top

GBS i

23

Multi-Threading 1/0

This is how an |/O-bound application might look:

Vo
Waiting Request 1 Request 2 Request 3
A . A : A '
' v Y Y
CPU
Processing
Time >

From https:/realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence

GBS i

The speedup gained from multithreading /O bound problems can be understood from the
following image.

Request 1
W;?n A Request 2
] A Request 3
: A :

.

Thread 1 |

Thread 2 ‘
Thread 3

CPU
Processing

Time >
From https://realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence

24

Multi-Processing

Fork

= Only available on UNIX machines (Linux, Mac, and the likes).

* The child process is an identical “cloned” of the parent process.

= Single machine

Spawn/Socket (PSOCK)

= Available on Unix and Windows.

= The parent process starts a fresh/empty process.

» Code & data needs to copied onto the new child process

= Can be scaled to multiple machines/cluster.

GBS i

-

Threads

~N

/ Parent Process\

N
[Code] [Data
y,

A\

L

/\

/ Child Process \

/

A\

Threads

\

)

/ Child Process \

N
{ Code] [Data
y,

/

A\

Threads

\

)

Multi-Processing - Splitting Data

Passing only data “chucks” to each worker Big chunks are generally better than little chunks

for (i in 1:10) {
for (j in 1:1000000) {

Worker 1 Worker 2 G e e i mrk
Threads Threads

GBS i

Distributed Computing on HPC

Distributed Memory Parallelism (Distributed Computing)
= Multiple machines with its own private memory. Workers

= Message Passing Interface (MPI)

» Host schedules the work across the workers

pr— Main Memory

Host

HPC Job Schedulers:
= Portable Batch System (PBS)
= Simple Linux Utility for Resource Management (SLURM)

= |BM Spectrum LSF Main Memory Network Main Memory

= Sun Grid Engine (SGE)

Main Memory

GBS i

28

BBS “" COPENHAGEN BUSINESS SCHOOL
l!n HANDELSHBJSKOLEN

PARALLEL PROGRANMING IN PYTHON

Kristoffer Gulmark Poulsen & Lars Nondal e “m P L
N \MBA Y
e Fqus mm PAMBA (Deems iy

Python Libraries - Overview

Built-in Libraries

» Threading
* Multiprocessing

= concurrent.futures

Compilers
» Numba

GBS i

Parallelization Libraries

Joblib
Loky
Ipyparallel
Ray

Dask

Al/ML Frameworks

= Pytorch (torch.multiprocessing ,torch.distributed)

Scikit-Learn

Tensorflow

40

[terations

There are two styles of iterations

for 1 in range(3):

np.sqrt(i)

for and while loops
= Itis often the most intuitive way to begin.

= Imperative programming .

f()
functional programming £()
= Readability & code redundancy map(» £ |:>

f()
= Functionals are a functions that takes a function as an input and returns a

vector as output. T()

= E.g. apply() or map()

GBS i

Python Library - Mumba

import numba

@numba.jit
. .) def my_ function(x):
Numba a dynamic just-in-time (JIT) compiler. Y= X %K D 40 % x4

return y

Write a pure Python function which can be JIT compiled to

native machine instructions. FESUIE = liny UnEEen()

print(result)

Similar in performance to C, C++ and Fortran, by simply

adding the decorator @jit in your function. import math

import numba
import GPUtil

@jit compilation adds overhead to the runtime of the

function (first time it is run). def £(x,y):
return math.pow(x,) + 4*math.sin(y)

CPU and GPU support.

@numba.vectorize([numba.float64(numba.float64, numba.float64)], target="cpu')
def f_numba_cpu(x,y):
return math.pow(x,) + 4*math.sin(y)

if GPUtil.getAvailable():
@numba.vectorize([numba.float64(numba.float64, numba.float64)],
target="cuda')
def f_numba_gpu(x,y):

ch i‘! return math.pow(x,) + 4*math.sin(y)

dd

Python Library - 7hreading

Multi-theading

Concurrent not parallel - subject to the GIL

Can increase speed for I/O-bound applications.

Single-machine

Functions:
= Thread()
= start()

= _join()

GBS i

import threading as th
def print_cube(num):
print("Cube: {}" .format(num * num * num))
def print_square(num):
print("Square: {}" .format(num * num))
if name__ =="_ main__ ":

tl = th.Thread(target=print_square, args=(10,))

t2 = th.Thread(target=print_cube, args=(10,))

.start()

.start()

t1.join()

t2.join()

print("Done!")

34

Python Library - Multiprocessing

Methods:
» ‘spawn’
= ‘fork’

» Single-machine

Functions:

P = mp.Process(target=x, args=y)
P.start()

P.join()

GBS i

import multiprocessing as mp

def print_cube(num):

print("Cube: {}" .format(num * num * num))

def print_square(num):
print("Square: {}" .format(num * num))

if _name__ =="_main__ ":
mp.set_start _method('spawn')

pl = mp.Process(target=print_square, args=(19,))
p2 = mp.Process(target=print_cube, args=(19,))

pl.start()

p2.start()

pl.join()

p2.join()

print("Done!")

Ja

Python Library - Multiprocessing

Creating a worker pool:

myPool = Pool(nworkers)

Functions:

myPool.apply()
myPool.apply_async()

myPool.map()
myPool.map_async()
myPool.imap()
myPool.imap_unordered()
myPool.starmap()

myPool.starmap_async()

GBS i

import multiprocessing as mp

def print cube(num):

print("Cube: {}" .format(num * num * num))

))]

if name_ == "' main_ ':
mp.set start method('spawn')

mypool = mp.Pool(processes=4)
value = mypool.map(print_cube,X)

if __name__ == '__main__':
mp.set_start_method('spawn")

with mp.Pool(processes=i) as mypool:
value = mypool.map(cube, X)

36

Python Library - concurrent futures

executor = ThreadPoolExecutor(max_workers=10)

executor ProcessPoolExecutor(max_workers=10)

Multiprocessing Pool vs ProcessPoolExecutor

executor.submit(task, item)

https://superfastpython.com/multiprocessing-pool-vs-
processpoolexecutor/ future.result()

executor.shutdown()
ThreadPoolExecutor vs. Thread

https://superfastpython.com/threadpoolexecutor-vs-
threads/#Similarities Between ThreadPoolExecutor and Thread

with ThreadPoolExecutor(max_workers=10) as executor:

for result in executor.map(task, items):

Concurrent not parallel- subject to the GIL

GBS i

37

https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread

Python Library - Scikit-Learn

Depending on the type of estimator parallelism:

OpenMP:

Is used to parallelize code written in Cython or C, relying on multi-
threading exclusively. By default, the implementations using OpenMP will
use as many threads as possible, i.e. as many threads as logical cores.

MKL, OpenBLAS or BLIS:

Scikit-learn relies heavily on NumPy and SciPy, which internally call
multi-threaded linear algebra routines (BLAS & LAPACK) implemented
in libraries such as MKL, OpenBLAS or BLIS.

from joblib import parallel backend

joblib backends: PASFEEN

with
with
with
with
with
with

GBS -

parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('

loky'):
mulitprocessing'):
dask'):

ray'):
ipyparallel'):
threading'):
spark"'):

OMP_NUM_THREADS=4 python my_script.py

MKL_NUM_THREADS
OPENBLAS_NUM_THREADS
BLIS_NUM_THREADS

a8

Scikit-Learn - joblib backends

with parallel backend('multiprocessing',n_jobs=2):
search.fit(digits.data,digits.target)

import numpy as np

from joblib import parallel backend

from sklearn.datasets import load_digits

from sklearn.model selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6,)>

with parallel backend('multiprocessing',n_jobs=16):

BRI 8 P ISREpacel vy o) search.fit(digits.data,digits.target)

'tol': np.logspace(-4, ,)
‘class_weight': [None, 'balanced'],

}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits() with parallel backend('loky',n_jobs=16):

search.fit(digits.data,digits.target)

Training: 0 Training: 1 Training: 2 Training: 3

' with parallel backend('threading',n_jobs=
search.fit(digits.data,digits.target)

GBS i

39

Scikit-Learn - Ray

import numpy as np import ray

from joblib import parallel backend from ray.util.joblib import register_ray
from sklearn.datasets import load_digits

from sklearn.model selection import RandomizedSearchCV

from sklearn.svm import SVC ray.init(num_cpus=16)

param_space = { register_ray()

'C': np.logspace(-6, 6,)

‘gamma': np.logspace(-3, 8,)

'tol': np.logspace(-4, P)s with parallel backend('ray’):
‘class_weight': [None, 'balanced'], search.fit(digits.data,digits.target)
}

model = SVC(kernel='rbf")
search RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits load_digits()
ray.shutdown()

GBS i

40

BBS ‘l“] COPENHAGEN BUSINESS SCHOOL

HANDELSHBJSKOLEN

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal e “m *
CRS “EQuis mm PDPAMBA (D CEMS p Wy
ACCREDITED ﬁ:égﬁs% ACCREDITED E

	Slide 1: HPC & Parallel Programming in Python
	Slide 2: About You?
	Slide 3: Program Today
	Slide 4: What is High Performance Computing (supercomputer)?
	Slide 5: Accessing an HPC…
	Slide 6: Accessing an HPC…
	Slide 7: When HPC might be for you
	Slide 8: National HPC facilities
	Slide 9: Type 1: Interactive HPC
	Slide 10: Type 1: SDU
	Slide 11: Support at CBS
	Slide 12: UCloud Dashboard
	Slide 14: Why is it taking so long?
	Slide 15: Parallel Programming
	Slide 16: Parallel Programming
	Slide 17: Parallel Programming
	Slide 18: Parallel Programming
	Slide 20: Models for Parallel Programming
	Slide 21: Terminology
	Slide 22: SIMD & Multi-Threading
	Slide 23: SIMD & Multi-Threading in Python and R
	Slide 24: Multi-Threading I/O
	Slide 25: Multi-Processing
	Slide 27: Multi-Processing – Splitting Data
	Slide 28: Distributed Computing on HPC
	Slide 29: Parallel Programming in Python
	Slide 30: Python Libraries - Overview
	Slide 31: Iterations
	Slide 33: Python Library - Numba
	Slide 34: Python Library - Threading
	Slide 35: Python Library - Multiprocessing
	Slide 36: Python Library - Multiprocessing
	Slide 37: Python Library - concurrent.futures
	Slide 38: Python Library - Scikit-Learn
	Slide 39: Scikit-Learn – joblib backends
	Slide 40: Scikit-Learn – Ray
	Slide 44: Questions?

