
HPC & PARALLEL PROGRAMMING IN R
New cloud computing possibilities for researchers & students

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

About You?

1. What type and size of data do you work with?

2. What programming languages do you work in (e.g. R, Python..)?

3. Are you familiar with parallel programming?

4. Are you familiar with high performance computing

5. In particular UCloud?

2

Program Today

▪ Introduction to UCloud platform (if needed)

▪ Basic theory of parallel programming

▪ Parallel programming basics within R.

▪ Parallelization of a ML models within the Tidymodels framework.

▪ https://cbs-hpc.github.io/

3

https://cbs-hpc.github.io/

What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM

4

Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

▪ Network of processors, hard drives & other hardware

Accessing an HPC…

Login Nodes

Access to assigned
compute & storage nodes

Log in
(ID + Password)

5

Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC

6

When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow

7

National HPC facilities

Type 1 (SDU, AAU)

Interactive HPC

Type 2 (AU,KU & DTU)

Throughput HPC

Type 3 (SDU)

Large Memory HPC

Type 5 (EuroHPC Consortium)

LUMI Capability HPC

8

https://www.deic.dk/en/supercomputing/national-hpc-facilities

• Collaboration between Universities and DeiC (Danish e-Infrastructure Cooperation)

https://cloud.sdu.dk/
https://genome.au.dk/
https://docs.hpc-type3.sdu.dk/
https://www.lumi-supercomputer.eu/may-we-introduce-lumi/
https://www.deic.dk/en/supercomputing/national-hpc-facilities

Type 1: Interactive HPC

Type 1 (SDU, AAU)

Interactive HPC

9

Cloud-based (HPC) systems (e.g. similar to google colab, amazon aws)

User friendly with Graphical User Interface (GUI).

Lots of preinstalled software (R, Python, Stata & Matlab)

Collaborative projects – work & share files with others

GDPR-Compliant

Access with university credentials from https://cloud.sdu.dk

• xxx@student.cbs.dk
• xxx@cbs.dk

• 1000 DKK Free credit.

https://cloud.sdu.dk/
https://cloud.sdu.dk/
mailto:xxx@student.cbs.dk
mailto:xxx@cbs.dk

Type 1: SDU

Type 1 (SDU, AAU)

Interactive HPC

10

• CPU resources

• GUI based

• Wide range of applications

• Slurm and Spark Cluster

https://cloud.sdu.dk/

Support at CBS

Local CBS support

▪ Lars Nondal & Kristoffer Gulmark Poulsen

▪ Contact: rdm@cbs.dk or directly to Kristoffer (kgp.lib@cbs.dk)

User support: Advising and granting resources, technical problems.

Consultation: Code development etc.

Teaching: “High Performance Computing”, “HPC & Parallel Programming in R and Python” and “Train your ML/AI Model
on GPUs”.

Documentation and Tutorials: https://cbs-hpc.github.io/

mailto:rdm@cbs.dk
mailto:kgp.lib@cbs.dk
https://cbs.libcal.com/event/4086280
https://cbs.libcal.com/event/4086211
https://cbs.libcal.com/event/4086197
https://cbs.libcal.com/event/4086279
https://cbs.libcal.com/event/4086279
https://cbs-hpc.github.io/

UCloud Dashboard

https://cloud.sdu.dk/app/dashboard

https://cloud.sdu.dk/app/dashboard

Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.

14

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks

15

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks

16

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily

simultaneously.

17

Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time

Parallel Programming

18

Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer.

20

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU

Terminology

▪ Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.

▪ Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

▪ Compiled - All code is converted to machine code and then program is executed. (C & Fortran)

21

Code

Process

Data

Threads

SIMD & Multi-Threading

22

Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.

SIMD & Multi-Threading in Python and R

23

SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection)

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR

Multi-Threading I/O

24

Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process.

▪ Single machine

25

Spawn/Socket (PSOCK)

▪ Available on Unix and Windows.

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads

Multi-Processing – Splitting Data

Passing only data “chucks” to each worker

27

Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks

Distributed Computing on HPC

28

Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI)

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS)

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU

PARALLEL PROGRAMMING IN R

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

R Packages - Overview

30

Compilers (Not covered)

▪ Rcpp

▪ JIT

parallel package

▪ multicore

▪ Snow

foreach loop adaptation of parallel

▪ doParallel, doSnow, doMC & doMPI…

Tidymodels framework

▪ Examples of parallel computing

Scalable Frameworks(Not covered)

▪ future

▪ SparkR https://cran.r-project.org/web/views/HighPerformanceComputing.html

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Iterations

31

There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a

vector as output.

▪ E.g. apply() or map()

for (i in 1:3) print(sqrt(i))

R Packages- Parallel

32

▪ multicore: Multi-processing on single machine through forking (Not Covered Today).

▪ Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

▪ paralellel serve as "parallel backend” to many/most packages, so worth understanding.

▪ It is all based on apply form of R iteration:

R Packages- Parallel /snow

33

Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions:

▪ cl<- makeCluster(n,type =“PSOCK“) - (Default)

▪ cl<- makeCluster(n,type =“FORK“)

▪ stopCluster(cl) – stops clusters

▪ clusterExport(cl,data) - Copies data to processes

▪ clusterApply(cl,data,func) – Runs analysis in parallel

▪ clusterApplyLB() – dynamic load balancing

▪ clusterEvalQ(cl, expr) – Evaluating an expression

▪ clusterSplit(cl,data) – data splitting

ClusterApply

cl <- makeCluster(4)
system.time(clusterExport(cl, "jan2010"))

user system elapsed
 0.128 0.027 0.574

system.time(cares <- clusterApply(cl, rep(5,4), do.n.kmeans))

 user system elapsed
 0.357 0.039 11.064

R Packages- foreach loop adaptation of parallel

34

Parallelization using the “for loop” iteration through the foreach package.

Many different backends:

▪ doParallel - https://cran.r-project.org/web/packages/doParallel/index.html

▪ doSnow - https://cran.r-project.org/web/packages/doSNOW/index.html

▪ doMC - https://cran.r-project.org/web/packages/doMC/index.html

▪ doMPI - https://cran.r-project.org/web/packages/doMPI/index.html

for (i in 1:3) print(sqrt(i))

library(foreach)
foreach (i=1:3) %do% sqrt(i)

library(doParallel)
registerDoParallel(3) # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

cl <- makePSOCKcluster(3)
registerDoParallel(cl) # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)

https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/doSNOW/index.html
https://cran.r-project.org/web/packages/doMC/index.html
https://cran.r-project.org/web/packages/doMPI/index.html

Tidymodels

35

Tidyverse/Tidymodels

▪ The tidyverse is a language for solving data science challenges with R code.

▪ Both tidymodels is built on the tidyverse principles:

▪ Should be intuitive

▪ Consistence syntax: function naming, arguments.

https://www.tidymodels.org/

https://www.tidymodels.org/

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Workflow

36

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Model Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!

37

▪ fit_resamples() computes a set of performance metrics across one or more resamples.

▪ tune_grid() of performance for tuning parameters across one or more resamples of the data.

▪ foreach package is used in combination with a backend package (e.g. “doParallel”).

▪ Many ML/AI packages within Tidymodels have built-in parallelisation.

Tidymodels - Model Fitting and Tuning

38

"resamples"

• then tuning will be performed in parallel over resamples alone.

• Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything"

• An outer parallel loop will iterate over resamples.

• An inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample.

• This will result in the preprocessor being re-processed multiple times

• Pre-processing depended.

nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

Tidymodels - Case

39

https://www.tidymodels.org/start/case-study/

• Hotel bookings data from Antonio, Almeida, and Nunes (2019)

• Aim: to predict which hotels are preferred by families with children.

• Data frame: 50.000 entries and 23 variables

Data Splitting

Methodology used: Classification

• Random Forrest - ranger::ranger()

• Neural Network - nnet::nnet()

set.seed(123)

Split into Training and Testing set
splits <- initial_split(hotels, strata = children)
hotel_train <- training(splits)
hotel_test <- testing(splits)

Split Validation set from Training set (Alternative to Cross Validation)
set.seed(234)
hotel_validation <- validation_split(hotel_train,
 strata = children,
 prop = 0.80)

https://www.tidymodels.org/start/case-study/
https://doi.org/10.1016/j.dib.2018.11.126

Grid-Tune with 1 Core
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE),
 metrics = metric_set(roc_auc))

toc()

208.8 sec elapsed

Grid-Tune with 8(4) Cores
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE),
 metrics = metric_set(roc_auc))

toc()

47.3 sec elapsed

Cores = parallel::detectCores()
set.seed(345)
Define Model
rf_model <-
 rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
 set_engine("ranger", num.threads = Cores) %>%
 set_mode("classification")

Define Workflow
rf_workflow <-
 workflow() %>%
 add_model(rf_model) %>%
 add_recipe(rf_recipe)

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Model Tuning

40

Pre-processing with recipes

Random Forrest - ranger::ranger()

Model Specifications Grid Tuning – In Parallel Grid Tuning – Not in Parallel

rf_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) #removes variables;

https://jhudatascience.org/tidyversecourse/model.html

Grid-Tune with No Parallelisation
tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

toc()

676.7 sec elapsed

Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "resamples"),
 metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

600.77 sec elapsed

https://jhudatascience.org/tidyversecourse/model.html

Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

293.41 sec elapsed

Grid Tuning – Not in Parallel

Tidymodels - Model Tuning

41

Pre-processing with recipes

Neural Network - nnet::nnet()

Model Specifications Grid Tuning – In Parallel

nnet_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date, holidays = holidays) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) %>% # removes orginal variables;
step_dummy(all_nominal_predictors()) %>% # Converts characters or factors dummy variables.
step_zv(all_predictors()) %>% # removes orginal variables;
step_normalize(all_predictors())

Define Model
nnet_model <-
 mlp(hidden_units = tune(), penalty = tune(),
epochs = tune()) %>%
 set_engine("nnet", trace = 0,MaxNWts = 10000) %>%
 set_mode("classification")

Define Workflow
nnet_workflow <-
 workflow() %>%
 add_model(nnet_model) %>%
 add_recipe(nnet_recipe)

https://jhudatascience.org/tidyversecourse/model.html

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

	Slide 1: HPC & Parallel Programming in R
	Slide 2: About You?
	Slide 3: Program Today
	Slide 4: What is High Performance Computing (supercomputer)?
	Slide 5: Accessing an HPC…
	Slide 6: Accessing an HPC…
	Slide 7: When HPC might be for you
	Slide 8: National HPC facilities
	Slide 9: Type 1: Interactive HPC
	Slide 10: Type 1: SDU
	Slide 11: Support at CBS
	Slide 12: UCloud Dashboard
	Slide 14: Why is it taking so long?
	Slide 15: Parallel Programming
	Slide 16: Parallel Programming
	Slide 17: Parallel Programming
	Slide 18: Parallel Programming
	Slide 20: Models for Parallel Programming
	Slide 21: Terminology
	Slide 22: SIMD & Multi-Threading
	Slide 23: SIMD & Multi-Threading in Python and R
	Slide 24: Multi-Threading I/O
	Slide 25: Multi-Processing
	Slide 27: Multi-Processing – Splitting Data
	Slide 28: Distributed Computing on HPC
	Slide 29: Parallel Programming in R
	Slide 30: R Packages - Overview
	Slide 31: Iterations
	Slide 32: R Packages- Parallel
	Slide 33: R Packages- Parallel /snow
	Slide 34: R Packages- foreach loop adaptation of parallel
	Slide 35: Tidymodels
	Slide 36: Tidymodels - Workflow
	Slide 37: Tidymodels - Model Fitting and Tuning
	Slide 38: Tidymodels - Model Fitting and Tuning
	Slide 39: Tidymodels - Case
	Slide 40: Tidymodels - Model Tuning
	Slide 41: Tidymodels - Model Tuning
	Slide 44: Questions?

