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About You?

1. What type and size of data do you work with?

2. What programming languages do you work in (e.g. R, Python..)?

3. Are you familiar with parallel programming?

4. Are you familiar with high performance computing

5. In particular UCloud?
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Program Today

▪ Introduction to UCloud platform (if needed)

▪ Basic theory of parallel programming

▪ Parallel programming basics within R.

▪ Parallelization of a ML models within the Tidymodels framework.

▪ https://cbs-hpc.github.io/
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https://cbs-hpc.github.io/


What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM
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Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

▪ Network of processors, hard drives & other hardware



Accessing an HPC…

Login Nodes

Access to assigned 
compute & storage nodes

Log in 
(ID + Password)
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Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC
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When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow
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National HPC facilities

Type 1 (SDU, AAU)

Interactive HPC

Type 2 (AU,KU & DTU)

Throughput HPC

Type 3 (SDU)

Large Memory HPC

Type 5 (EuroHPC Consortium)

LUMI Capability HPC
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https://www.deic.dk/en/supercomputing/national-hpc-facilities 

• Collaboration between Universities and DeiC (Danish e-Infrastructure Cooperation)

https://cloud.sdu.dk/
https://genome.au.dk/
https://docs.hpc-type3.sdu.dk/
https://www.lumi-supercomputer.eu/may-we-introduce-lumi/
https://www.deic.dk/en/supercomputing/national-hpc-facilities


Type 1: Interactive HPC

Type 1 (SDU, AAU)

Interactive HPC
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Cloud-based (HPC) systems (e.g. similar to google colab, amazon aws)

User friendly with Graphical User Interface (GUI).

Lots of preinstalled software (R, Python, Stata & Matlab)

Collaborative projects – work & share files with others

GDPR-Compliant

Access with university credentials from https://cloud.sdu.dk

• xxx@student.cbs.dk
• xxx@cbs.dk

• 1000 DKK Free credit.

https://cloud.sdu.dk/
https://cloud.sdu.dk/
mailto:xxx@student.cbs.dk
mailto:xxx@cbs.dk


Type 1: SDU

Type 1 (SDU, AAU)

Interactive HPC
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• CPU resources

• GUI based

• Wide range of applications

• Slurm and Spark Cluster

https://cloud.sdu.dk/


Support at CBS

Local CBS support  

▪ Lars Nondal &  Kristoffer Gulmark Poulsen

▪ Contact: rdm@cbs.dk or directly to Kristoffer (kgp.lib@cbs.dk)

User support: Advising and granting resources, technical problems.

Consultation: Code development etc. 

Teaching: “High Performance Computing”, “HPC & Parallel Programming in R and Python” and “Train your ML/AI Model 
on GPUs”.

Documentation and Tutorials: https://cbs-hpc.github.io/

mailto:rdm@cbs.dk
mailto:kgp.lib@cbs.dk
https://cbs.libcal.com/event/4086280
https://cbs.libcal.com/event/4086211
https://cbs.libcal.com/event/4086197
https://cbs.libcal.com/event/4086279
https://cbs.libcal.com/event/4086279
https://cbs-hpc.github.io/


UCloud Dashboard

https://cloud.sdu.dk/app/dashboard 

https://cloud.sdu.dk/app/dashboard


Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.
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Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily 

simultaneously.
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Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time



Parallel Programming
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Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines. 

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer. 
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Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU



Terminology

▪ Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to 

communicate.

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.

▪ Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

▪ Compiled - All code is converted to machine code and then program is executed. (C & Fortran)
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Code

Process

Data

Threads



SIMD & Multi-Threading 
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Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on 

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.



SIMD & Multi-Threading in Python and R
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SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection) 

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR



Multi-Threading I/O
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Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process. 

▪ Single machine

25

Spawn/Socket (PSOCK)

▪ Available on Unix and Windows. 

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads



Multi-Processing – Splitting Data

Passing only data “chucks” to each worker
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Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks



Distributed Computing on HPC
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Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI) 

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS) 

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU



PARALLEL PROGRAMMING IN R

Kristoffer Gulmark Poulsen & Lars Nondal
CBS



R Packages - Overview
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Compilers (Not covered)

▪ Rcpp

▪ JIT

parallel package

▪ multicore

▪ Snow

foreach loop adaptation of parallel

▪ doParallel, doSnow, doMC & doMPI…

Tidymodels framework

▪ Examples of  parallel computing

Scalable Frameworks(Not covered)

▪ future

▪ SparkR https://cran.r-project.org/web/views/HighPerformanceComputing.html

https://cran.r-project.org/web/views/HighPerformanceComputing.html


Iterations
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There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming 

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a 

vector as output. 

▪ E.g. apply() or map()

for (i in 1:3) print(sqrt(i))



R Packages- Parallel
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▪ multicore: Multi-processing on single machine through forking (Not Covered Today).

▪ Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

▪ paralellel serve as "parallel backend” to many/most packages, so worth understanding.

▪ It is all based on apply form of R iteration: 



R Packages- Parallel /snow
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Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions:

▪ cl<- makeCluster(n,type =“PSOCK“) - (Default)

▪ cl<- makeCluster(n,type =“FORK“) 

▪ stopCluster(cl) – stops clusters

▪ clusterExport(cl,data) - Copies data to processes 

▪ clusterApply(cl,data,func) – Runs analysis in parallel 

▪ clusterApplyLB() – dynamic load balancing 

▪ clusterEvalQ(cl, expr) – Evaluating an expression

▪ clusterSplit(cl,data) – data splitting

ClusterApply

cl <- makeCluster(4)
system.time(clusterExport(cl, "jan2010"))

user  system elapsed 
 0.128  0.027  0.574

system.time(cares <- clusterApply(cl, rep(5,4), do.n.kmeans))

 user  system elapsed 
 0.357  0.039  11.064



R Packages- foreach  loop adaptation of parallel 
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Parallelization using the “for loop” iteration through the foreach package.

Many different backends:

▪ doParallel - https://cran.r-project.org/web/packages/doParallel/index.html

▪ doSnow - https://cran.r-project.org/web/packages/doSNOW/index.html

▪ doMC - https://cran.r-project.org/web/packages/doMC/index.html

▪ doMPI - https://cran.r-project.org/web/packages/doMPI/index.html

for (i in 1:3) print(sqrt(i))

library(foreach)
foreach (i=1:3) %do% sqrt(i)

library(doParallel)
registerDoParallel(3)  # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

cl <- makePSOCKcluster(3)
registerDoParallel(cl) # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)

https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/doSNOW/index.html
https://cran.r-project.org/web/packages/doMC/index.html
https://cran.r-project.org/web/packages/doMPI/index.html


Tidymodels
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Tidyverse/Tidymodels

▪ The tidyverse is a language for solving data science challenges with R code. 

▪ Both tidymodels is built on the tidyverse principles:

▪ Should be intuitive 

▪ Consistence syntax: function naming, arguments.

https://www.tidymodels.org/

https://www.tidymodels.org/


https://jhudatascience.org/tidyversecourse/model.html 

Tidymodels  - Workflow
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https://jhudatascience.org/tidyversecourse/model.html


Tidymodels  - Model Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!
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▪ fit_resamples() computes a set of performance metrics across one or more resamples.

▪ tune_grid() of performance for tuning parameters across one or more resamples of the data.

▪ foreach package is used in combination with a backend package (e.g. “doParallel”).

▪ Many ML/AI packages within Tidymodels have built-in parallelisation. 

        

               

                  

          

                  

          

                  

          



Tidymodels  - Model Fitting and Tuning
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"resamples" 

• then tuning will be performed in parallel over resamples alone.

• Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything" 

• An outer parallel loop will iterate over resamples. 

• An inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample. 

• This will result in the preprocessor being re-processed multiple times

• Pre-processing depended.

nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))



Tidymodels  - Case
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https://www.tidymodels.org/start/case-study/

• Hotel bookings data from Antonio, Almeida, and Nunes (2019)

• Aim: to predict which hotels are preferred by families with children.

• Data frame:  50.000 entries and 23 variables

Data Splitting

Methodology used: Classification

• Random Forrest - ranger::ranger()

• Neural Network - nnet::nnet()

set.seed(123)

# Split into Training and Testing set
splits  <- initial_split(hotels, strata = children)
hotel_train <- training(splits)
hotel_test  <- testing(splits)

# Split Validation set from Training set (Alternative to Cross Validation)
set.seed(234)
hotel_validation <- validation_split(hotel_train,
            strata = children,
            prop = 0.80)

https://www.tidymodels.org/start/case-study/
https://doi.org/10.1016/j.dib.2018.11.126


# Grid-Tune with 1 Core
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE),
    metrics = metric_set(roc_auc))

toc()

208.8 sec elapsed

# Grid-Tune with 8(4) Cores
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE),
    metrics = metric_set(roc_auc))

toc()

47.3 sec elapsed

Cores = parallel::detectCores()
set.seed(345)
# Define Model
rf_model <-
 rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
 set_engine("ranger", num.threads = Cores) %>%
 set_mode("classification")

# Define Workflow
rf_workflow <-
 workflow() %>%
 add_model(rf_model) %>%
 add_recipe(rf_recipe)

https://jhudatascience.org/tidyversecourse/model.html 

Tidymodels  - Model Tuning

40

Pre-processing with recipes

Random Forrest - ranger::ranger()

Model Specifications Grid Tuning – In Parallel Grid Tuning – Not in Parallel

rf_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) #removes variables;

https://jhudatascience.org/tidyversecourse/model.html


# Grid-Tune with No Parallelisation
tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))

toc()

676.7 sec elapsed

# Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "resamples"),
    metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

600.77 sec elapsed

https://jhudatascience.org/tidyversecourse/model.html 

# Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

293.41 sec elapsed

Grid Tuning – Not in Parallel

Tidymodels  - Model Tuning 
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Pre-processing with recipes

Neural Network - nnet::nnet()

Model Specifications Grid Tuning – In Parallel

nnet_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date, holidays = holidays) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) %>% # removes orginal variables;
step_dummy(all_nominal_predictors()) %>% # Converts characters or factors dummy variables.
step_zv(all_predictors()) %>% # removes orginal variables;
step_normalize(all_predictors())

# Define Model
nnet_model <-
 mlp(hidden_units = tune(), penalty = tune(), 
epochs = tune()) %>%
 set_engine("nnet", trace = 0,MaxNWts = 10000) %>%
 set_mode("classification")

# Define Workflow
nnet_workflow <-
 workflow() %>%
 add_model(nnet_model) %>%
 add_recipe(nnet_recipe)

https://jhudatascience.org/tidyversecourse/model.html


QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal
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