BBS ‘l“] COPENHAGEN BUSINESS SCHOOL

N HANDELSHOJSKOLEN

HPG & PARALLEL PROGRANMING IN R

New cloud computing possibilities for researchers & students

EEEEEEEEEEEEEEEEEEEE

Kristoffer Gulmark Poulsen & Lars Nondal e (L
CBS ‘EQUIS mm KPAMBA (D cEMS uﬁ

Program Today

Basic theory of parallel programming

Parallel programming basics within R.

Parallelization of a ML models within the Tidymodels framework.

Distributed parallelization on a SLURM Cluster.

https://cbs-hpc.github.io/

GBS i

https://cbs-hpc.github.io/

What is High Performance GComputing (supercomputer)?

= Network of processors, hard drives & other hardware

Hardware Message Passing Interface (MPI) Simple Linux Utility for Resource Management (SLURM)
= Core: Processing unit on a single machine. = A standard protocol for passing data and other = A free MPI framework for Linux and Unix-like kernels.
= Node: A single machine. messages between nodes in a cluster.

= Cluster: Network of multiple nodes.

CPU

GBS i

Storage

Accessing an HPGC...

;\] mmE
0] H B
P -] mm B
‘ Login Nodes [l [] . [[l .
Log in Access to assigned
(ID + Password) compute & storage nodes

GBS i

Accessing an HPGC...

= Your assigned resources (HW + SW) can be used from your PC

x
I .

GBS i

When HPC might be for you

= Applying ML/AI

= Running simulation and resampling techniques
= Working with large datasets

= My laptop runs out of memory

= My workflow is running very slow

GBS i

Why is it taking so long?

Computation can be slow for one of three reasons:

L_omjer CPU burst
. . . . Shorter I/0O Ope_ra‘tion
CPU bound when computational time is restricted by processor.

1/0 bound when reading from and to disk/database is limiting factor. cPU Bost] [[CPU Bast | V[CPUBast | [[CPU Burst]

Memory bound when limited by the memory required to hold the working data.

Shorter CPU burst Longer I/O Operations

CPU CPU CPU
burst burst burst

GBS i

Parallel Programming

Sequential Computing Parallel Computing
= Single core processor = Multi-core processor
= Multiple tasks which runs overlapping but not at same time = Multiple tasks which runs overlapping.
= Synchronous tasks . = Synchronous/Asynchronous
Sequential
Processing
Start
Parallel
Processing
L
Iteration 1 ST
L
Iteration 2 Iteration 1 Iteration 2 [teration 3
| \/
! .
teration 3 End
L
End

GBS i

Parallel Programming

Sequential Computing
= Single core processor
= Multiple tasks which runs overlapping but not at same time.

= Synchronous tasks

GBS i

Parallel Computing
= Multi-core processor

= Multiple tasks which runs overlapping.

= Synchronous/Asynchronous

S e

S e

CHOP

STIR

10

Parallel Programming

Concurrency Parallelism

= Executing multiple tasks at the same time but not necessarily = One task is split into subtasks and run in parallel at the exact same time.

simultaneously. = Run multiple tasks in in parallel on multiple CPUs at the exact same time

T k> — CHOP

SR - STIR
GBS i

11

Parallel Programming

Data Parallelism

by

Task || Task || Task || Task || Task || Task
1 1 1 1 1 1

HENEE

W

Aggregation
Task

.

GBS i

Input Data

Parallel
Processing

Result Data

Task Parallelism

@y () G

~.

Aggregation
Task

)

Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Main Memory

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.
Network Main Memory

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer.

Main Memory

GBS i

14

Terminology

= Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

= Thread: Path of execution within a single process.

Threads

GBS i

15

SIMD & M“Iti'Threading SIMD | Instruction pool

Single Instruction, Multiple Data (SIMD)

= single thread/processor where each processing unit (PU) performs the same instruction on

different data.

Data pool

=
c
>
[
o
-+
@
>

= Vectorization.

(

Multi-Threading

/ Process \

. Iti-threaded
= Threads are multiple paths of execution within a single process. [] [. Multthreaded)
Code Data

N
Code] [Data
v

~

J

= Appears as a single process.

~

Threads Threads

Single instruction, multiple threads (SIMT) \)

A

/)

top - 15:12:02 up 2 days, 54 min, O users, load average: 6.42, 6.45, 6.45
. . Tasks: 18 total, 1 running, 9 sleeping, @ stopped, 0 zombie
Python and R are examples of single-threaded programming languages. ACou(s): 110 us, .3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0hi, .85, 0. st
MiB Mem : 385583.7 total, 193583.0 free, 102124.0 used, 89876.6 buff/cache
MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.8 avail Mem

PID USER I VIRT RES SHR %CPU MEM TIME+ COMMAND
243 ucloud 20 0 3970788 962704 74288 @278.1 WO.2 0:44.50 rsession
202 rstudio+ 20 O 182200 18268 14724 i 8.0 0:01.00 rserver
1 ucloud 200 0 6896 3428 3196 S 0.0 0.0 0:00.05 start-rstu+
7 root 20 0 10420 4920 4376 S 0.0 0.0 0:00.00 sudo
8 root 20 0 200 4 @GS 0.0 0.0 0:00.01 sé-svscan
37 root 20 0 200 4 6S 0.0 0.0 0:00.00 s6-supervi+
198 root 20 0O 200 4 @GS 0.0 0.0 0:00.00 sé6-supervi+
K\ 265 ucloud 206 0 2492 580 512§ 0.6 8.6 08:00.01 sh
" 271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 hash
‘ 273 ucloud 20 @ 10832 3824 3316R 0.0 8.0 0:00.12 top

17

SIMD & Multi-Threading in Python and R

SIMT is achieved in several ways:

Through external libraries
= Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.
= Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.
= NumPy, SciPy and Pandas

= built-in R functions

top - 15:12:02 up 2 days, 54 min, 0 users, load average: 6.42, 6.45, 6.45

“Static Compilers” File Edit Code View Plots Session Build Debug [, 19 tora1, 1 running, 9 sleeping, @ stopped, B zombie
. . . o .- O 2 . b Go to file/functior %Cpu(s): 11.0 us, 0.3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.8 st
OpenMP/GCC (GNU Compiler Collection) MiB Mem : 385583.7 total, 193583.8 free, 102124.0 used, B9876.6 buff/cache
« Rcpp Console Terminal Background Jobs MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.0 avail Mem
R4.2.1 . jwork/
- Cython N PID USER I VIRT RES SHR ' XCPU MEM TIME+ COMMAND
A (: matrix(rhorm(n*n), ncol=n, nrow=n) 243 ucloud 20 O 3970780 962704 0.2 0 rsession
B <- matrix(rnorm(n*n), ncol=n, nrow=n) 202 rstudio+ 20 0 182200 18268 0.6 o: rserver
C o¢- B Y B 1 ucloud 20 B 689 3428 31965 0.0 0.0 0:00.05 start-rstu+
: : . 7 root 20 0 10420 4920 4376 S 0.0 0.6 0:00.00 sudo
Dynamlc/JIT Compllers. 8 root 20 0 200 4 S 0.0 0.0 0:00.01 sé-svscan
« Numba 37 root 20 0 200 4 ©S 0.0 0.0 0:00.00 sé-supervi+
198 root 2 0 200 4 S 0.0 0.0 0:00.00 sé-supervi+
= JITR 265 ucloud 20 0 2492 580 512 S 0.0 0.8 0:00.01 sh
271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 bash
273 ucloud 20 0 10032 3824 3316R 6.0 0.0 0:00.12 top

GBS i

18

Multi-Threading 1/0

This is how an |/O-bound application might look:

Vo
Waiting Request 1 Request 2 Request 3
A . A : A '
' v Y Y
CPU
Processing
Time >

From https:/realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence

GBS i

The speedup gained from multithreading /O bound problems can be understood from the
following image.

Request 1
W;?n A Request 2
] A Request 3
: A :

.

Thread 1 |

Thread 2 ‘
Thread 3

CPU
Processing

Time >
From https://realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence

19

Multi-Processing

Fork

= Only available on UNIX machines (Linux, Mac, and the likes).

* The child process is an identical “cloned” of the parent process.

= Single machine

Spawn/Socket (PSOCK)

= Available on Unix and Windows.

= The parent process starts a fresh/empty process.

» Code & data needs to copied onto the new child process

= Can be scaled to multiple machines/cluster.

GBS i

-

Threads

~N

/ Parent Process\

N
[Code] [Data
y,

A\

L

/\

/ Child Process \

/

A\

Threads

\

)

/ Child Process \

N
{ Code] [Data
y,

/

A\

Threads

\

)

Multi-Processing - Load Balancing

Master/Worker Approach No distribution Dynamic balancer/scheduler
= Better work distribution

= Low Overhead

= More overhead

= Bad load balance.

GBS i

¢l

Multi-Processing - Splitting Data

Passing only data “chucks” to each worker Big chunks are generally better than little chunks

for (i in 1:10) {
for (j in 1:1000000) {

Worker 1 Worker 2 G e e i mrk
Threads Threads

GBS i

Distributed Computing on HPC

Distributed Memory Parallelism (Distributed Computing)
= Multiple machines with its own private memory. Workers

= Message Passing Interface (MPI)

» Host schedules the work across the workers

pr— Main Memory

Host

HPC Job Schedulers:
= Portable Batch System (PBS)
= Simple Linux Utility for Resource Management (SLURM)

= |BM Spectrum LSF Main Memory Network Main Memory

= Sun Grid Engine (SGE)

Main Memory

GBS i

23

BBS “" COPENHAGEN BUSINESS SCHOOL
l!n HANDELSHBJSKOLEN

PARALLEL PROGRAMMING IN R

Kristoffer Gulmark Poulsen & Lars Nondal e “m P L
N \MBA Y
e Fqus mm PAMBA (Deems iy

R Packages - Qverview

GBS i

Compilers (Not covered)

" Rcpp
- JIT

parallel package

= multicore

= Snow

foreach loop adaptation of parallel
= doParallel, doSnow, doMC & doMPLI...

Tidymodels framework

= Examples of parallel computing

Scalable Frameworks(Not covered)

= future
= SparkR

https://cran.r-project.org/web/views/HighPerformanceComputing.html

20

https://cran.r-project.org/web/views/HighPerformanceComputing.html

[terations

There are two styles of iterations
for (i in 1:3) print(sqgrt(i))

for and while loops
= Itis often the most intuitive way to begin.

= Imperative programming .

f()
functional programming £()
= Readability & code redundancy map(» £ |:>

f()
= Functionals are a functions that takes a function as an input and returns a

vector as output. T()

= E.g. apply() or map()

GBS i

R Packages- Paralle/

multicore: Multi-processing on single machine through forking (Not Covered Today).

Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

paralellel serve as "parallel backend” to many/most packages, so worth understanding.

It is all based on apply form of R iteration:

GBS i

lapply
sapply
vapply
apply(rowwise)

apply(columnwise)

parLapply
parsapply
parRapply. parApply(.1)

parCapply. parApply(.2)

27

R Packages- Parallel/ /snow

Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions: ClusterApply

cl<- makeCluster(n,type =“PSOCK*) - (Default) cl <- makeCluster(4)
clusterExport(cl, "jan2010")

cl<- makeCluster(n,type =“FORK")

cares <- clusterApply(cl, rep(5,4), do.n.kmeans)

= stopCluster(cl) — stops clusters

= clusterExport(cl,data) - Copies data to processes

= clusterApply(cl,data,func) — Runs analysis in parallel
= clusterApplyLB() — dynamic load balancing

= clusterEvalQ(cl, expr) — Evaluating an expression

= clusterSplit(cl,data) — data splitting

GBS i

28

R Packages- fareach loop adaptation of paral/le/

Parallelization using the “for loop” iteration through the foreach package.

for (i in 1:3) print(sqrt(i))

Many different backends:

library(foreach)
foreach (i=1:3) %do% sqrt(i)

= doParallel - https://cran.r-project.org/web/packages/doParallel/index.html

= doSnow - https://cran.r-project.org/web/packages/doSNOW/index.html

library(doParallel) = doMC - https://cran.r-project.org/web/packages/doMC/index.html

registerDoParallel(3)
foreach (i=1:3) %dopar% sqrt(i) = doMPI - https://cran.r-project.org/web/packages/doMPI/index.html

cl <- makePSOCKcluster(3)
registerDoParallel(cl)

foreach (i=1:3) %dopar% sqrt(i)

GBS i

29

https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/doSNOW/index.html
https://cran.r-project.org/web/packages/doMC/index.html
https://cran.r-project.org/web/packages/doMPI/index.html

lidvmodels

Tidyverse/Tidymodels

= The tidyverse is a language for solving data science challenges with R code.

= Both tidymodels is built on the tidyverse principles: Tidymodels PACKAGES GET STARTED

LEARN HELP CONTRIBUTE Q (]

= Should be intuitive

TIDYMODELS

= Consistence syntax: function naming, arguments.

7 tidymodels

The tidymodels framework is a collection of

packages for modeling and machine learning using
tidyverse principles.

Install tidymodels with:

install.packages("tidymodels")

https://www.tidymodels.org/

GBS i

40

https://www.tidymodels.org/

lidvmodel/s - Workflow

Data Exploration

Data Splitting @

\ 4

GBS i

Variable Assignment

Feature Selection <> Pre-processing

_Model Specification/ | _, Model
Model Fitting/ Performance

Model Tuning Evaluation

https://jhudatascience.org/tidyversecourse/model.html|

1

https://jhudatascience.org/tidyversecourse/model.html

Iidvmode/s - NModel Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!

= foreach package is used in combination with a backend package (e.g. “doParallel”).

Many ML/AI packages within Tidymodels have built-in parallelisation.

fit_resamples() computes a set of performance metrics across one or more resamples.

tune_grid() of performance for tuning parameters across one or more resamples of the data.

Training

v

All Data

Resample 1

Resample 2

Resample B

so S S

32

Iidvmode/s - NModel Fitting and Tuning

nnet_tune <-
nnet_workflow %>%
tune_grid(hotel validation,

grid = nGrid,
control = control _grid(save_pred = TRUE,parallel over = "everything"),
metrics = metric_set(roc_auc))

"resamples"
* then tuning will be performed in parallel over resamples alone.

* Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything"

* An outer parallel loop will iterate over resamples.

* Aninner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample.
* This will result in the preprocessor being re-processed multiple times

* Pre-processing depended.

GBS i

dd

lidymodels - Gase

* Hotel bookings data from Antonio, Almeida, and Nunes (2019)

* Aim: to predict which hotels are preferred by families with children.

e Data frame: 50.000 entries and 23 variables

Data Splitting

set.seed(

splits «<- initial split(hotels, strata = children)
hotel train <- training(splits)
hotel test <- testing(splits)

set.seed()
hotel validation <- validation_split(hotel train,
strata = children,

prop =)
Methodology used: Classification
* Random Forrest - ranger::ranger()

* Neural Network - nnet::nnet()

GBS i

oom = M

11
12
13
14
15
16
17
18
19
20
21
22
23

https://www.tidymodels.org/start/case-study/

b
hiote

lead_time
stays_in_weekend_nightis
stays_in_week_nights

adults

children

mea

country

miarket_segment
distribution_channe
is_repeated_guest
previous_cancellations
previous_bookings_not_canceled
reserved_room_type
assigned_room_type
booking_changes
deposit_type
days_in_waiting_list
customer_type
average_daily_rate
required_car_parking_spaces
total_of special_requests

arrival_date

34

https://www.tidymodels.org/start/case-study/
https://doi.org/10.1016/j.dib.2018.11.126

Data Exploration

lidvmodels - Model Tuning

Random Forrest - ranger::ranger()

Data Splitting @

Variable Assignment

Pre-processing with recipes

rf_recipe <-

recipe(children ~ ., data = hotel_train) %>%

step_date(arrival_date) %>%

step_holiday(arrival_date) %>%
step_rm(arrival_date)

Model Specifications Grid Tuning — In Parallel

Cores = parallel::detectCores()
set.seed(

tic()
rf_tune <-
rf_workflow %>%
tune_grid(hotel_validation,
grid = nGrid,
control = control_grid(save_pred = TRUE),
metrics = metric_set(roc_auc))

rf_model <-
rand_forest(mtry = t

une min_n = tune trees =) %>%
set_engine("ranger",| num.threads = Cores)|%>%
set_mode("classification
toc()
rf_workflow <-

add_model(rf_model) %>%
add_recipe(rf_recipe)

GBS i

Feature Selection <«—» Pre-processing — — ModelSpecification/ _, Model

Model Fitting/
Model Tuning

K
@

ourse/model.html

Performance
Evaluation

https://ihudatascience.org/tidyversec

Grid Tuning — Not in Parallel

tic()
rf_tune <-
rf_workflow %>%
tune_grid(hotel_validation,
grid = nGrid,
control = control_grid(save_pred = TRUE),

metrics = metric_set(roc_auc))

toc()

Ja

https://jhudatascience.org/tidyversecourse/model.html

lidvmodels - Model Tuning

Neural Network - nnet::nnet()

Pre-processing with recipes

nnet_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>%
step_holiday(arrival_date, holidays = holidays) %>%
step_rm(arrival_date) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors())

Model Specifications

nnet_model <-
mlp(hidden_units = tune(), penalty = tune(),

epochs = tune()) %>%
set_engine("nnet", trace

= 0,MaxNWts =) %>%
set_mode("classification")

nnet_workflow <-
workflow() %>%
add_model(nnet_model) %>%
add_recipe(nnet_recipe)

GBS i

Grid Tuning — In Parallel

library(doParallel)

library(foreach)

cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
nnet_workflow %>%
tune_grid(hotel_validation,
grid = 5,
control
metrics

= control_grid(save_pred = TRUE
= metric_set(roc_auc))

toc()
stopCluster(cl)

Data Splitting @

Data Exploration

https://jhudatascience.org/tidyversecourse/model.html

> Feature Selection <«— Pre-processing |— —

Variable Assignment

Model Specification/ _, Model

parallel over = "everything")

Model Fitting/ Performance
Model Tuning Evaluation

Grid Tuning — Not in Parallel

library(doParallel)

library(foreach)

cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()

nnet_tune <-
nnet_workflow %>%
tune_grid(hotel_validation,

grid = 5,
control = control_grid(save_pred = TRUE},parallel_over = "resamples")
metrics = metric_set(roc_auc))

toc()

stopCluster(cl)

tic()

nnet_tune <-
nnet_workflow %>%
tune_grid(hotel_validation,

grid = 5,
control = control_grid(save_pred = TRUE|parallel_over = "everything"},
metrics = metric_set(roc_auc))

toc()

https://jhudatascience.org/tidyversecourse/model.html

Distributed Computing on UCloud (SLURM cluster)

Neural Network - nnet::nnet()

args = commandArgs(trailingOnly=TRUE)
nproces = as.numeric(args[1])

hostlist <- paste(unlist(read.delim(file="hostnames.txt", header=F, sep ="

for (i in @:length(hostlist)){
if (1)

hosts <- rep(hostlist[i],nproces)
} else {

hosts <-c(hosts, rep(hostlist[i],nproces))

}
}

tic()

cl <- makePSOCKcluster(names=hosts)

registerDoParallel(cl)

nnet_tune <-
nnet_workflow %>%
tune_grid(hotel_validation,
grid = nGrid,

control = control_grid(save_pred = TRUE,parallel_over

metrics = metric_set(roc_auc))
toc()
stopCluster(cl)

GBS i

"everything"),

"))

https://cbs-
hpc.github.io/Tutorials/SLURM/SLURM/

https://cloud.sdu.dk/app/jobs/pro
perties/792600?app=

#run the parallel calculation

X <- iris[which(iris[,5] != "setosa"), c(1,5)]

trials <- 200000

system.time({

r <- foreach(icount(trials), .combine=rbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)

resultl <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(resultl)

}

)

stopCluster(cl)

37

https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/

Apache Spark (RSpark) Cluster on UCloud

WORKER https://docs.cloud.sdu.dk/Apps/jupyter-
recuro lab.htmI?highlight=jupyterlab

DRIVER | MASTER SO https://docs.cloud.sdu.dk/Apps/spark-
i cluster.htmI?highlight=spark

WORKER https://cloud.sdu.dk/app/jobs/create?app=spark-
cluster&version=3.4.0

GBS i

a8

https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab

BBS ‘l“] COPENHAGEN BUSINESS SCHOOL

HANDELSHBJSKOLEN

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal e “m *
CRS “EQuis mm PDPAMBA (D CEMS p Wy
ACCREDITED ﬁ:égﬁs% ACCREDITED E

	Slide 1: HPC & Parallel Programming in R
	Slide 2: Program Today
	Slide 3: What is High Performance Computing (supercomputer)?
	Slide 4: Accessing an HPC…
	Slide 5: Accessing an HPC…
	Slide 6: When HPC might be for you
	Slide 8: Why is it taking so long?
	Slide 9: Parallel Programming
	Slide 10: Parallel Programming
	Slide 11: Parallel Programming
	Slide 12: Parallel Programming
	Slide 14: Models for Parallel Programming
	Slide 15: Terminology
	Slide 17: SIMD & Multi-Threading
	Slide 18: SIMD & Multi-Threading in Python and R
	Slide 19: Multi-Threading I/O
	Slide 20: Multi-Processing
	Slide 21: Multi-Processing – Load Balancing
	Slide 22: Multi-Processing – Splitting Data
	Slide 23: Distributed Computing on HPC
	Slide 24: Parallel Programming in R
	Slide 25: R Packages - Overview
	Slide 26: Iterations
	Slide 27: R Packages- Parallel
	Slide 28: R Packages- Parallel /snow
	Slide 29: R Packages- foreach loop adaptation of parallel
	Slide 30: Tidymodels
	Slide 31: Tidymodels - Workflow
	Slide 32: Tidymodels - Model Fitting and Tuning
	Slide 33: Tidymodels - Model Fitting and Tuning
	Slide 34: Tidymodels - Case
	Slide 35: Tidymodels - Model Tuning
	Slide 36: Tidymodels - Model Tuning
	Slide 37: Distributed Computing on UCloud (SLURM cluster)
	Slide 38: Apache Spark (RSpark) Cluster on UCloud
	Slide 39: Questions?

