
HPC & PARALLEL PROGRAMMING IN R
New cloud computing possibilities for researchers & students

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

Program Today

▪ Basic theory of parallel programming

▪ Parallel programming basics within R.

▪ Parallelization of a ML models within the Tidymodels framework.

▪ Distributed parallelization on a SLURM Cluster.

▪ https://cbs-hpc.github.io/

2

https://cbs-hpc.github.io/

What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM

3

Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

Message Passing Interface (MPI)

▪ A standard protocol for passing data and other

messages between nodes in a cluster.

Simple Linux Utility for Resource Management (SLURM)

▪ A free MPI framework for Linux and Unix-like kernels.

▪ Network of processors, hard drives & other hardware

Accessing an HPC…

Login Nodes

Access to assigned
compute & storage nodes

Log in
(ID + Password)

4

Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC

5

When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow

6

Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.

8

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks

9

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks

10

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily

simultaneously.

11

Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time

Parallel Programming

12

Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer.

14

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU

Terminology

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.

15

Code

Process

Data

Threads

SIMD & Multi-Threading

17

Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.

SIMD & Multi-Threading in Python and R

18

SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection)

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR

Multi-Threading I/O

19

Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process.

▪ Single machine

20

Spawn/Socket (PSOCK)

▪ Available on Unix and Windows.

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads

Multi-Processing – Load Balancing

21

Dynamic balancer/scheduler

▪ Better work distribution

▪ More overhead

Master

Work load
1

Work load
2

Workload
3

Worker 1

Worker 2

Workload
4

Master

Worker 1Workload 1

Workload 2

Workload 3

Worker 2

Worker 3

Master/Worker Approach

Master

Work load
1

Work load 2

Workload
3

Worker 1

Worker 2

Workload
4

No distribution

▪ Low Overhead

▪ Bad load balance.

Multi-Processing – Splitting Data

Passing only data “chucks” to each worker

22

Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks

Distributed Computing on HPC

23

Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI)

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS)

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU

PARALLEL PROGRAMMING IN R

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

R Packages - Overview

25

Compilers (Not covered)

▪ Rcpp

▪ JIT

parallel package

▪ multicore

▪ Snow

foreach loop adaptation of parallel

▪ doParallel, doSnow, doMC & doMPI…

Tidymodels framework

▪ Examples of parallel computing

Scalable Frameworks(Not covered)

▪ future

▪ SparkR https://cran.r-project.org/web/views/HighPerformanceComputing.html

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Iterations

26

There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a

vector as output.

▪ E.g. apply() or map()

for (i in 1:3) print(sqrt(i))

R Packages- Parallel

27

▪ multicore: Multi-processing on single machine through forking (Not Covered Today).

▪ Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

▪ paralellel serve as "parallel backend” to many/most packages, so worth understanding.

▪ It is all based on apply form of R iteration:

R Packages- Parallel /snow

28

Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions:

▪ cl<- makeCluster(n,type =“PSOCK“) - (Default)

▪ cl<- makeCluster(n,type =“FORK“)

▪ stopCluster(cl) – stops clusters

▪ clusterExport(cl,data) - Copies data to processes

▪ clusterApply(cl,data,func) – Runs analysis in parallel

▪ clusterApplyLB() – dynamic load balancing

▪ clusterEvalQ(cl, expr) – Evaluating an expression

▪ clusterSplit(cl,data) – data splitting

ClusterApply

cl <- makeCluster(4)
clusterExport(cl, "jan2010")

cares <- clusterApply(cl, rep(5,4), do.n.kmeans)

R Packages- foreach loop adaptation of parallel

29

Parallelization using the “for loop” iteration through the foreach package.

Many different backends:

▪ doParallel - https://cran.r-project.org/web/packages/doParallel/index.html

▪ doSnow - https://cran.r-project.org/web/packages/doSNOW/index.html

▪ doMC - https://cran.r-project.org/web/packages/doMC/index.html

▪ doMPI - https://cran.r-project.org/web/packages/doMPI/index.html

for (i in 1:3) print(sqrt(i))

library(foreach)
foreach (i=1:3) %do% sqrt(i)

library(doParallel)
registerDoParallel(3) # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

cl <- makePSOCKcluster(3)
registerDoParallel(cl) # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)

https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/doSNOW/index.html
https://cran.r-project.org/web/packages/doMC/index.html
https://cran.r-project.org/web/packages/doMPI/index.html

Tidymodels

30

Tidyverse/Tidymodels

▪ The tidyverse is a language for solving data science challenges with R code.

▪ Both tidymodels is built on the tidyverse principles:

▪ Should be intuitive

▪ Consistence syntax: function naming, arguments.

https://www.tidymodels.org/

https://www.tidymodels.org/

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Workflow

31

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Model Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!

32

▪ fit_resamples() computes a set of performance metrics across one or more resamples.

▪ tune_grid() of performance for tuning parameters across one or more resamples of the data.

▪ foreach package is used in combination with a backend package (e.g. “doParallel”).

▪ Many ML/AI packages within Tidymodels have built-in parallelisation.

Tidymodels - Model Fitting and Tuning

33

"resamples"

• then tuning will be performed in parallel over resamples alone.

• Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything"

• An outer parallel loop will iterate over resamples.

• An inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample.

• This will result in the preprocessor being re-processed multiple times

• Pre-processing depended.

nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

Tidymodels - Case

34

https://www.tidymodels.org/start/case-study/

• Hotel bookings data from Antonio, Almeida, and Nunes (2019)

• Aim: to predict which hotels are preferred by families with children.

• Data frame: 50.000 entries and 23 variables

Data Splitting

Methodology used: Classification

• Random Forrest - ranger::ranger()

• Neural Network - nnet::nnet()

set.seed(123)

Split into Training and Testing set
splits <- initial_split(hotels, strata = children)
hotel_train <- training(splits)
hotel_test <- testing(splits)

Split Validation set from Training set (Alternative to Cross Validation)
set.seed(234)
hotel_validation <- validation_split(hotel_train,
 strata = children,
 prop = 0.80)

https://www.tidymodels.org/start/case-study/
https://doi.org/10.1016/j.dib.2018.11.126

Grid-Tune with 1 Core
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE),
 metrics = metric_set(roc_auc))

toc()

208.8 sec elapsed

Grid-Tune with 8(4) Cores
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE),
 metrics = metric_set(roc_auc))

toc()

47.3 sec elapsed

Cores = parallel::detectCores()
set.seed(345)
Define Model
rf_model <-
 rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
 set_engine("ranger", num.threads = Cores) %>%
 set_mode("classification")

Define Workflow
rf_workflow <-
 workflow() %>%
 add_model(rf_model) %>%
 add_recipe(rf_recipe)

https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Model Tuning

35

Pre-processing with recipes

Random Forrest - ranger::ranger()

Model Specifications Grid Tuning – In Parallel Grid Tuning – Not in Parallel

rf_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) #removes variables;

https://jhudatascience.org/tidyversecourse/model.html

Grid-Tune with No Parallelisation
tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

toc()

676.7 sec elapsed

Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "resamples"),
 metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

600.77 sec elapsed

https://jhudatascience.org/tidyversecourse/model.html

Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = 5,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

293.41 sec elapsed

Grid Tuning – Not in Parallel

Tidymodels - Model Tuning

36

Pre-processing with recipes

Neural Network - nnet::nnet()

Model Specifications Grid Tuning – In Parallel

nnet_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date, holidays = holidays) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) %>% # removes orginal variables;
step_dummy(all_nominal_predictors()) %>% # Converts characters or factors dummy variables.
step_zv(all_predictors()) %>% # removes orginal variables;
step_normalize(all_predictors())

Define Model
nnet_model <-
 mlp(hidden_units = tune(), penalty = tune(),
epochs = tune()) %>%
 set_engine("nnet", trace = 0,MaxNWts = 10000) %>%
 set_mode("classification")

Define Workflow
nnet_workflow <-
 workflow() %>%
 add_model(nnet_model) %>%
 add_recipe(nnet_recipe)

https://jhudatascience.org/tidyversecourse/model.html

Distributed Computing on UCloud (SLURM cluster)

37

Neural Network - nnet::nnet()
Get Input arguments
args = commandArgs(trailingOnly=TRUE)
nproces = as.numeric(args[1])

Get Cluster Info
hostlist <- paste(unlist(read.delim(file="hostnames.txt", header=F, sep =" ")))
for (i in 0:length(hostlist)){
 if (i == 0){
hosts <- rep(hostlist[i],nproces)
 } else {
hosts <-c(hosts, rep(hostlist[i],nproces))
 }
}

tic()
Starting Up Cluster
cl <- makePSOCKcluster(names=hosts)
#cl <- makePSOCKcluster(parallel::detectCores())

registerDoParallel(cl)

Grid-Tune
nnet_tune <-
 nnet_workflow %>%
 tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))
toc()
stopCluster(cl)

https://cloud.sdu.dk/app/jobs/pro
perties/792600?app=

https://cbs-
hpc.github.io/Tutorials/SLURM/SLURM/

#run the parallel calculation
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
trials <- 200000
system.time({
r <- foreach(icount(trials), .combine=rbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)
}
})

stopCluster(cl)

https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/

Apache Spark (RSpark) Cluster on UCloud

38

https://cloud.sdu.dk/app/jobs/create?app=spark-
cluster&version=3.4.0

https://docs.cloud.sdu.dk/Apps/spark-
cluster.html?highlight=spark

https://docs.cloud.sdu.dk/Apps/jupyter-
lab.html?highlight=jupyterlab

https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

	Slide 1: HPC & Parallel Programming in R
	Slide 2: Program Today
	Slide 3: What is High Performance Computing (supercomputer)?
	Slide 4: Accessing an HPC…
	Slide 5: Accessing an HPC…
	Slide 6: When HPC might be for you
	Slide 8: Why is it taking so long?
	Slide 9: Parallel Programming
	Slide 10: Parallel Programming
	Slide 11: Parallel Programming
	Slide 12: Parallel Programming
	Slide 14: Models for Parallel Programming
	Slide 15: Terminology
	Slide 17: SIMD & Multi-Threading
	Slide 18: SIMD & Multi-Threading in Python and R
	Slide 19: Multi-Threading I/O
	Slide 20: Multi-Processing
	Slide 21: Multi-Processing – Load Balancing
	Slide 22: Multi-Processing – Splitting Data
	Slide 23: Distributed Computing on HPC
	Slide 24: Parallel Programming in R
	Slide 25: R Packages - Overview
	Slide 26: Iterations
	Slide 27: R Packages- Parallel
	Slide 28: R Packages- Parallel /snow
	Slide 29: R Packages- foreach loop adaptation of parallel
	Slide 30: Tidymodels
	Slide 31: Tidymodels - Workflow
	Slide 32: Tidymodels - Model Fitting and Tuning
	Slide 33: Tidymodels - Model Fitting and Tuning
	Slide 34: Tidymodels - Case
	Slide 35: Tidymodels - Model Tuning
	Slide 36: Tidymodels - Model Tuning
	Slide 37: Distributed Computing on UCloud (SLURM cluster)
	Slide 38: Apache Spark (RSpark) Cluster on UCloud
	Slide 39: Questions?

