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Program Today

▪ Basic theory of parallel programming

▪ Parallel programming basics within R.

▪ Parallelization of a ML models within the Tidymodels framework.

▪ Distributed parallelization on a SLURM Cluster.

▪ https://cbs-hpc.github.io/
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https://cbs-hpc.github.io/


What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM
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Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

Message Passing Interface (MPI)

▪ A standard protocol for passing data and other 

messages between nodes in a cluster. 

Simple Linux Utility for Resource Management (SLURM) 

▪ A free MPI framework for Linux and Unix-like kernels. 

▪ Network of processors, hard drives & other hardware



Accessing an HPC…

Login Nodes

Access to assigned 
compute & storage nodes

Log in 
(ID + Password)
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Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC
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When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow
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Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.
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Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily 

simultaneously.
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Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time



Parallel Programming
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Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines. 

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to 

communicate.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer. 
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Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU



Terminology

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.
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Code

Process

Data

Threads



SIMD & Multi-Threading 
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Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on 

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.



SIMD & Multi-Threading in Python and R
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SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection) 

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR



Multi-Threading I/O
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Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process. 

▪ Single machine
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Spawn/Socket (PSOCK)

▪ Available on Unix and Windows. 

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads



Multi-Processing – Load Balancing
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Dynamic balancer/scheduler  

▪ Better work distribution

▪ More overhead

Master

Work load 
1

Work load 
2

Workload 
3

Worker 1

Worker 2

Workload 
4

Master

Worker 1Workload 1

Workload 2

Workload 3

Worker 2

Worker 3

Master/Worker Approach

Master

Work load 
1

Work load 2

Workload 
3

Worker 1  

Worker 2

Workload 
4

No distribution 

▪ Low Overhead

▪ Bad load balance.



Multi-Processing – Splitting Data

Passing only data “chucks” to each worker
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Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks



Distributed Computing on HPC
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Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI) 

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS) 

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU
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R Packages - Overview
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Compilers (Not covered)

▪ Rcpp

▪ JIT

parallel package

▪ multicore

▪ Snow

foreach loop adaptation of parallel

▪ doParallel, doSnow, doMC & doMPI…

Tidymodels framework

▪ Examples of  parallel computing

Scalable Frameworks(Not covered)

▪ future

▪ SparkR https://cran.r-project.org/web/views/HighPerformanceComputing.html

https://cran.r-project.org/web/views/HighPerformanceComputing.html


Iterations
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There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming 

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a 

vector as output. 

▪ E.g. apply() or map()

for (i in 1:3) print(sqrt(i))



R Packages- Parallel
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▪ multicore: Multi-processing on single machine through forking (Not Covered Today).

▪ Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

▪ paralellel serve as "parallel backend” to many/most packages, so worth understanding.

▪ It is all based on apply form of R iteration: 



R Packages- Parallel /snow
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Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions:

▪ cl<- makeCluster(n,type =“PSOCK“) - (Default)

▪ cl<- makeCluster(n,type =“FORK“) 

▪ stopCluster(cl) – stops clusters

▪ clusterExport(cl,data) - Copies data to processes 

▪ clusterApply(cl,data,func) – Runs analysis in parallel 

▪ clusterApplyLB() – dynamic load balancing 

▪ clusterEvalQ(cl, expr) – Evaluating an expression

▪ clusterSplit(cl,data) – data splitting

ClusterApply

cl <- makeCluster(4)
clusterExport(cl, "jan2010")

cares <- clusterApply(cl, rep(5,4), do.n.kmeans)



R Packages- foreach  loop adaptation of parallel 
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Parallelization using the “for loop” iteration through the foreach package.

Many different backends:

▪ doParallel - https://cran.r-project.org/web/packages/doParallel/index.html

▪ doSnow - https://cran.r-project.org/web/packages/doSNOW/index.html

▪ doMC - https://cran.r-project.org/web/packages/doMC/index.html

▪ doMPI - https://cran.r-project.org/web/packages/doMPI/index.html

for (i in 1:3) print(sqrt(i))

library(foreach)
foreach (i=1:3) %do% sqrt(i)

library(doParallel)
registerDoParallel(3)  # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

cl <- makePSOCKcluster(3)
registerDoParallel(cl) # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)

https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/doSNOW/index.html
https://cran.r-project.org/web/packages/doMC/index.html
https://cran.r-project.org/web/packages/doMPI/index.html


Tidymodels
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Tidyverse/Tidymodels

▪ The tidyverse is a language for solving data science challenges with R code. 

▪ Both tidymodels is built on the tidyverse principles:

▪ Should be intuitive 

▪ Consistence syntax: function naming, arguments.

https://www.tidymodels.org/

https://www.tidymodels.org/


https://jhudatascience.org/tidyversecourse/model.html 

Tidymodels  - Workflow
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https://jhudatascience.org/tidyversecourse/model.html


Tidymodels  - Model Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!
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▪ fit_resamples() computes a set of performance metrics across one or more resamples.

▪ tune_grid() of performance for tuning parameters across one or more resamples of the data.

▪ foreach package is used in combination with a backend package (e.g. “doParallel”).

▪ Many ML/AI packages within Tidymodels have built-in parallelisation. 

        

               

                  

          

                  

          

                  

          



Tidymodels  - Model Fitting and Tuning
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"resamples" 

• then tuning will be performed in parallel over resamples alone.

• Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything" 

• An outer parallel loop will iterate over resamples. 

• An inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample. 

• This will result in the preprocessor being re-processed multiple times

• Pre-processing depended.

nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))



Tidymodels  - Case
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https://www.tidymodels.org/start/case-study/

• Hotel bookings data from Antonio, Almeida, and Nunes (2019)

• Aim: to predict which hotels are preferred by families with children.

• Data frame:  50.000 entries and 23 variables

Data Splitting

Methodology used: Classification

• Random Forrest - ranger::ranger()

• Neural Network - nnet::nnet()

set.seed(123)

# Split into Training and Testing set
splits  <- initial_split(hotels, strata = children)
hotel_train <- training(splits)
hotel_test  <- testing(splits)

# Split Validation set from Training set (Alternative to Cross Validation)
set.seed(234)
hotel_validation <- validation_split(hotel_train,
            strata = children,
            prop = 0.80)

https://www.tidymodels.org/start/case-study/
https://doi.org/10.1016/j.dib.2018.11.126


# Grid-Tune with 1 Core
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE),
    metrics = metric_set(roc_auc))

toc()

208.8 sec elapsed

# Grid-Tune with 8(4) Cores
tic()
rf_tune <-
 rf_workflow %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE),
    metrics = metric_set(roc_auc))

toc()

47.3 sec elapsed

Cores = parallel::detectCores()
set.seed(345)
# Define Model
rf_model <-
 rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
 set_engine("ranger", num.threads = Cores) %>%
 set_mode("classification")

# Define Workflow
rf_workflow <-
 workflow() %>%
 add_model(rf_model) %>%
 add_recipe(rf_recipe)

https://jhudatascience.org/tidyversecourse/model.html 

Tidymodels  - Model Tuning
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Pre-processing with recipes

Random Forrest - ranger::ranger()

Model Specifications Grid Tuning – In Parallel Grid Tuning – Not in Parallel

rf_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) #removes variables;

https://jhudatascience.org/tidyversecourse/model.html


# Grid-Tune with No Parallelisation
tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))

toc()

676.7 sec elapsed

# Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "resamples"),
    metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

600.77 sec elapsed

https://jhudatascience.org/tidyversecourse/model.html 

# Grid-Tune with Multiple Cores
library(doParallel)
library(foreach)
cl <- makePSOCKcluster(parallel::detectCores())
registerDoParallel(cl)

tic()
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = 5,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))

toc()
stopCluster(cl)

293.41 sec elapsed

Grid Tuning – Not in Parallel

Tidymodels  - Model Tuning 
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Pre-processing with recipes

Neural Network - nnet::nnet()

Model Specifications Grid Tuning – In Parallel

nnet_recipe <-
recipe(children ~ ., data = hotel_train) %>%
step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
step_holiday(arrival_date, holidays = holidays) %>% # generates a set of indicator variables for specific holidays.
step_rm(arrival_date) %>% # removes orginal variables;
step_dummy(all_nominal_predictors()) %>% # Converts characters or factors dummy variables.
step_zv(all_predictors()) %>% # removes orginal variables;
step_normalize(all_predictors())

# Define Model
nnet_model <-
 mlp(hidden_units = tune(), penalty = tune(), 
epochs = tune()) %>%
 set_engine("nnet", trace = 0,MaxNWts = 10000) %>%
 set_mode("classification")

# Define Workflow
nnet_workflow <-
 workflow() %>%
 add_model(nnet_model) %>%
 add_recipe(nnet_recipe)

https://jhudatascience.org/tidyversecourse/model.html


Distributed Computing on UCloud (SLURM cluster)
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Neural Network - nnet::nnet()
# Get Input arguments
args = commandArgs(trailingOnly=TRUE)
nproces = as.numeric(args[1])

# Get Cluster Info
hostlist <- paste(unlist(read.delim(file="hostnames.txt", header=F, sep =" ")))
for (i in 0:length(hostlist)){
 if (i == 0){
hosts <- rep(hostlist[i],nproces)
 } else {
hosts <-c(hosts, rep(hostlist[i],nproces))
 }
}

tic()
# Starting Up Cluster
cl <- makePSOCKcluster(names=hosts)
#cl <- makePSOCKcluster(parallel::detectCores())

registerDoParallel(cl)

# Grid-Tune
nnet_tune <-
 nnet_workflow  %>%
 tune_grid(hotel_validation,
    grid = nGrid,
    control = control_grid(save_pred = TRUE,parallel_over = "everything"),
    metrics = metric_set(roc_auc))
toc()
stopCluster(cl)

https://cloud.sdu.dk/app/jobs/pro
perties/792600?app=

https://cbs-
hpc.github.io/Tutorials/SLURM/SLURM/ 

#run the parallel calculation
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
trials <- 200000
system.time({
r <- foreach(icount(trials), .combine=rbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)
}
})

stopCluster(cl)

https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/


Apache Spark (RSpark) Cluster on UCloud
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https://cloud.sdu.dk/app/jobs/create?app=spark-
cluster&version=3.4.0

https://docs.cloud.sdu.dk/Apps/spark-
cluster.html?highlight=spark 

https://docs.cloud.sdu.dk/Apps/jupyter-
lab.html?highlight=jupyterlab 

https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://cloud.sdu.dk/app/jobs/create?app=spark-cluster&version=3.4.0
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/spark-cluster.html?highlight=spark
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab
https://docs.cloud.sdu.dk/Apps/jupyter-lab.html?highlight=jupyterlab


QUESTIONS?
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