

HPC & PARALLEL PROGRAMMING IN R

New cloud computing possibilities for researchers & students

Kristoffer Gulmark Poulsen & Lars Nondal CBS

Program Today

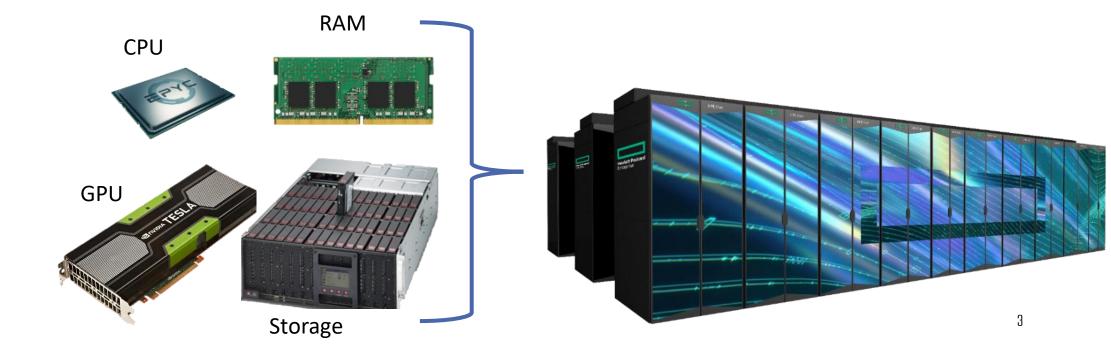
- Basic theory of parallel programming
- Parallel programming basics within R.
- Parallelization of a ML models within the Tidymodels framework.
- Distributed parallelization on a SLURM Cluster.

https://cbs-hpc.github.io/

What is High Performance Computing (supercomputer)?

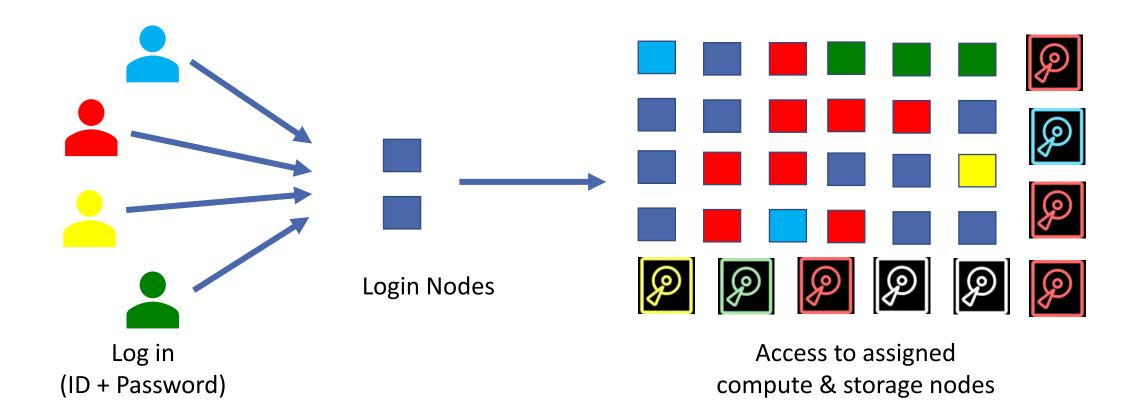
Network of processors, hard drives & other hardware

Hardware

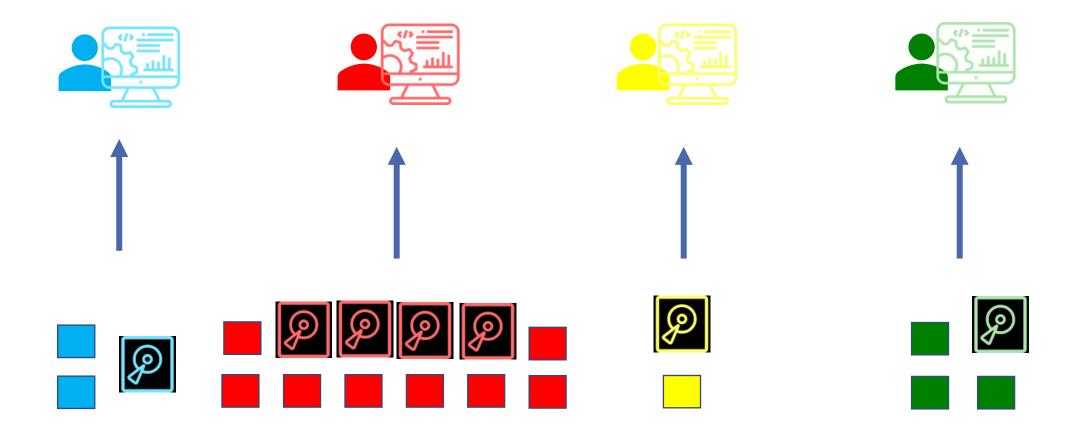

- **Core**: Processing unit on a single machine.
- Node: A single machine.
- Cluster: Network of multiple nodes.

Message Passing Interface (MPI)

 A standard protocol for passing data and other messages between **nodes** in a **cluster**.


Simple Linux Utility for Resource Management (SLURM)

• A free MPI framework for Linux and Unix-like kernels.

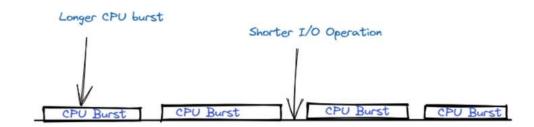

Accessing an HPC...

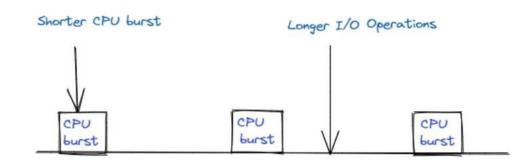
Accessing an HPC...

• Your assigned resources (HW + SW) can be used from your PC

When HPC might be for you

- Applying ML/AI
- Running simulation and resampling techniques
- Working with large datasets
- My laptop runs out of memory
- My workflow is running very slow

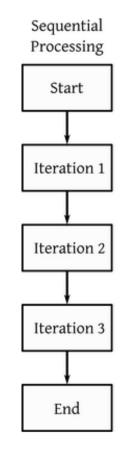

Why is it taking so long?

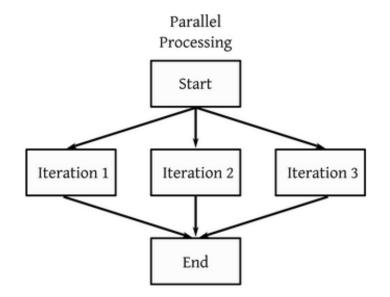

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading **from** and **to disk/database** is limiting factor.

Memory bound when limited by the memory required to hold the working data.

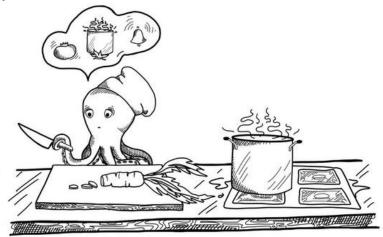


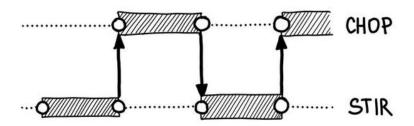

Sequential Computing

- Single core processor
- Multiple tasks which runs overlapping but **not** at same time
- Synchronous tasks

Parallel Computing

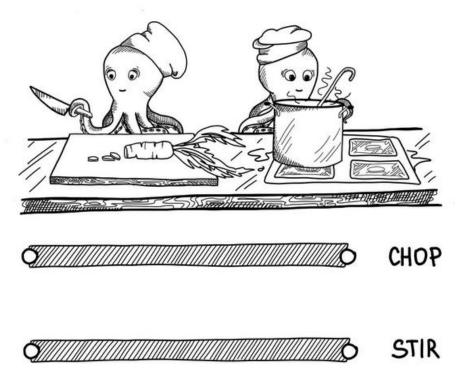
- Multi-core processor
- Multiple tasks which runs overlapping.
- Synchronous/Asynchronous





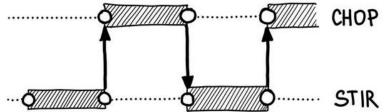
Sequential Computing

- Single core processor
- Multiple tasks which runs overlapping but **not** at same time.
- Synchronous tasks


CBS i

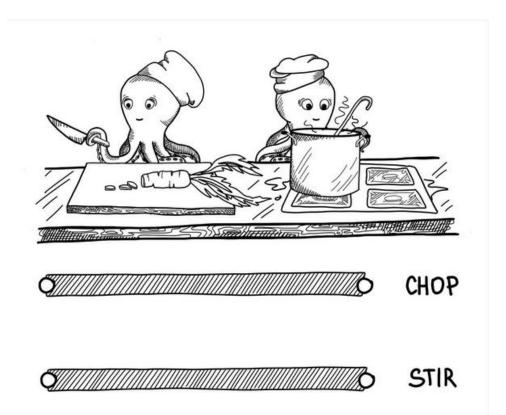
Parallel Computing

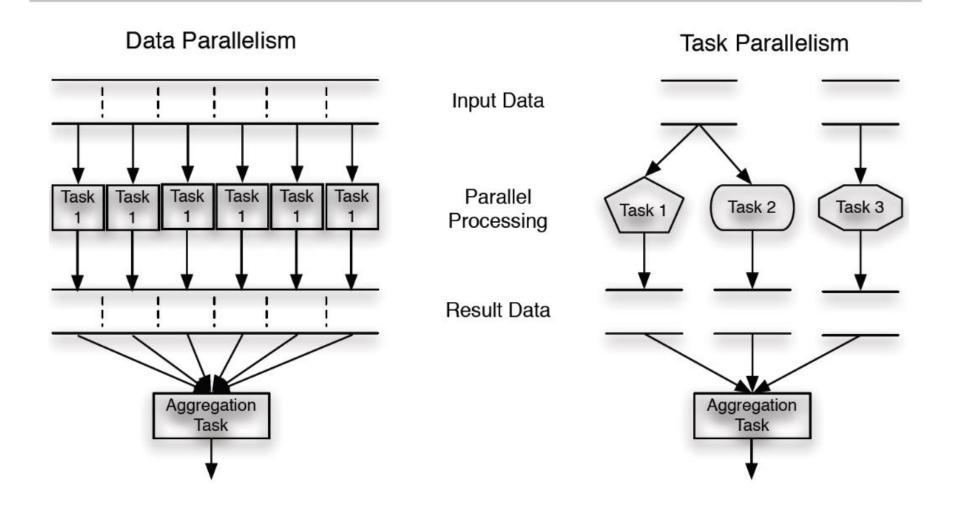
- Multi-core processor
- Multiple tasks which runs overlapping.
- Synchronous/Asynchronous



10

Concurrency

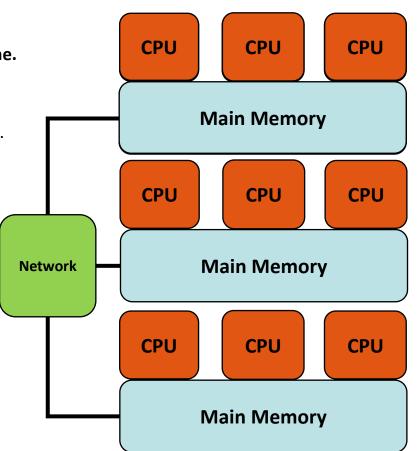

• Executing multiple tasks at the same time but not necessarily simultaneously.



Parallelism

- One task is split into subtasks and run in parallel at the exact same time.
- Run multiple tasks in in parallel on multiple CPUs at the exact same time

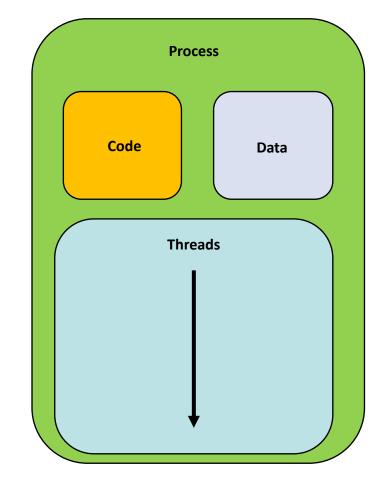
Models for Parallel Programming



Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don't need to communicate.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.


Explicit Parallelism - is written into the source code by the Programmer.

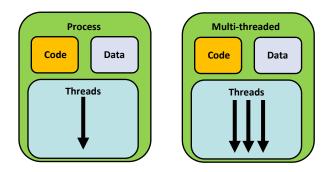
Terminology

- **Process**: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.
- **Thread**: Path of execution within a single process.

SIMD & Multi-Threading

Single Instruction, Multiple Data (SIMD)

- single thread/processor where each processing unit (PU) performs the same instruction on different data.
- Vectorization.


Multi-Threading

- Threads are multiple paths of execution within a single process.
- Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.

SIMD Instruction pool

top - 15:12:02 up 2 days, 54 min, 0 users, load average: 6.42, 6.45, 6.45 Tasks: 10 total, 1 running, 9 sleeping, 0 stopped, 0 zombie %Cpu(s): 11.0 us, 0.3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st MiB Mem : 385583.7 total, 193583.0 free, 102124.0 used, 89876.6 buff/cache MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.0 avail Mem

PID	USER	PR	NI	VIRT	RES	SHR		%CPU	MEM	TIME+	COMMAND
243	ucloud	20	0	3970780	962704	74288		278.1	0.2	0:44.50	rsession
202	rstudio+	20	0	182200	18268	14724		07	0.0	0:01.00	rserver
1	ucloud	20	0	6896	3428	3196	S	0.0	0.0	0:00.05	start-rstu+
7	root	20	0	10420	4920	4376	S	0.0	0.0	0:00.00	sudo
8	root	20	0	200	4	0	S	0.0	0.0	0:00.01	s6-svscan
37	root	20	0	200	4	0	S	0.0	0.0	0:00.00	s6-supervi+
198	root	20	0	200	4	0	S	0.0	0.0	0:00.00	s6-supervi+
265	ucloud	20	0	2492	580	512	S	0.0	0.0	0:00.01	sh
271	ucloud	20	0	8168	4904	3408	S	0.0	0.0	0:00.01	bash
273	ucloud	20	0	10032	3824	3316	R	0.0	0.0	0:00.12	top

SIMD & Multi-Threading in Python and R

SIMT is achieved in several ways:

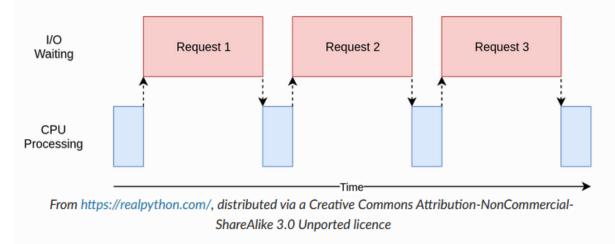
Through external libraries

- Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.
- Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.
- NumPy, SciPy and Pandas
- built-in R functions

"Static Compilers"

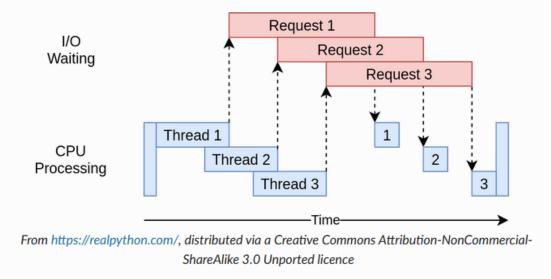
- OpenMP/GCC (GNU Compiler Collection)
- Rcpp
- Cython

Dynamic/JIT Compilers:


- Numba
- JITR

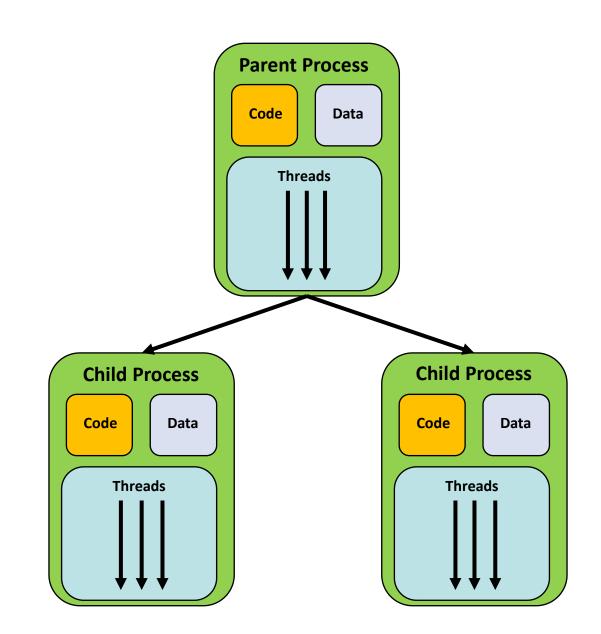
File Edit Code View Plots Session Build Dei Image: Image	ebug Tasks: 1 %Cpu(s): MiB Mem :	cop – 15:12:02 up 2 (Tasks: 10 total, 2 (Cpu(s): 11.0 us, 0 HiB Mem : 385583.7 to HiB Swap: 8192.0 to		1 runni .3 sy, otal, 19	
	PID U		R NI		
> n <- 4*1024		ICLOUD 2		9'	
A <- matrix(rnorm(n*n), ncol=n, nrow=n)		studio+ 2		runni Ssy, Cal, 1 9	
B <- matrix(rnorm(n*n), ncol=n, nrow=n) C <- A %*% B		icloud 2			
	7 r	oot 2	0 0	1	
	8 r	oot 2	0 0		
	37 r	oot 2	0 0		
	198 r	oot 2	0 0		
	265 u	icloud 2	0 0		
	271 µ	cloud 2	0 0		

- 15:12:02 up 2 days, 54 min, 0 users, load average: 6.42, 6.45, 6.45 ks: 10 total, 1 running, 9 sleeping, 0 stopped, 0 zombie u(s): 11.0 us, 0.3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st Mem : 385583.7 total, 193583.0 free, 102124.0 used, 89876.6 buff/cache Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.0 avail Mem


PID	USER	PR	NI	VIRT	RES	SHR		%CPU	MEM	TIME+	COMMAND
243	ucloud	20	0	3970780	962704	74288		278.1	0.2	0:44.50	rsession
202	rstudio+	20	0	182200	18268	14724		0.7	0.0	0:01.00	rserver
1	ucloud	20	0	6896	3428	3196	S	0.0	0.0	0:00.05	start-rstu+
7	root	20	0	10420	4920	4376	S	0.0	0.0	0:00.00	sudo
8	root	20	0	200	4	0	S	0.0	0.0	0:00.01	s6-svscan
37	root	20	0	200	4	0	S	0.0	0.0	0:00.00	s6-supervi+
198	root	20	0	200	4	0	S	0.0	0.0	0:00.00	s6-supervi+
265	ucloud	20	0	2492	580	512	S	0.0	0.0	0:00.01	sh
271	ucloud	20	0	8168	4904	3408	S	0.0	0.0	0:00.01	bash
273	ucloud	20	0	10032	3824	3316	R	0.0	0.0	0:00.12	top

This is how an I/O-bound application might look:

The speedup gained from multithreading I/O bound problems can be understood from the following image.


Multi-Processing

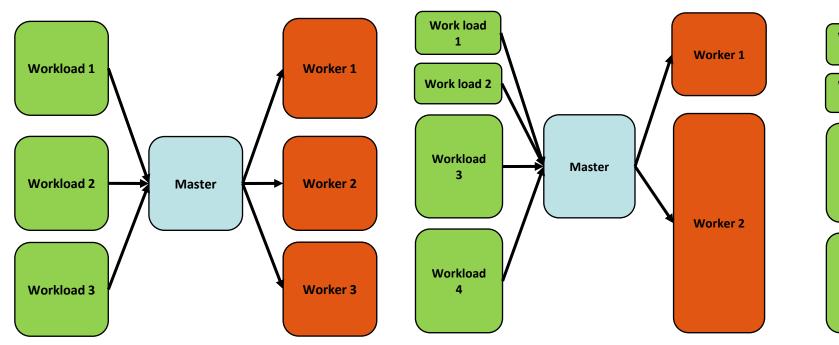
Fork

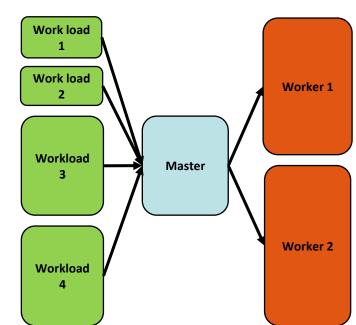
- Only available on UNIX machines (Linux, Mac, and the likes).
- The child process is an identical "cloned" of the parent process.
- Single machine

Spawn/Socket (PSOCK)

- Available on Unix and Windows.
- The parent process starts a fresh/empty process.
- Code & data needs to copied onto the new child process
- Can be scaled to multiple machines/cluster.

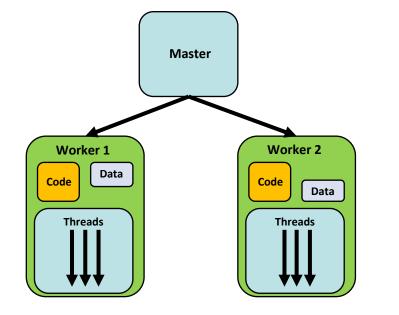
Multi-Processing - Load Balancing


Master/Worker Approach


No distribution

- Low Overhead
- Bad *load balance*.

Dynamic balancer/scheduler

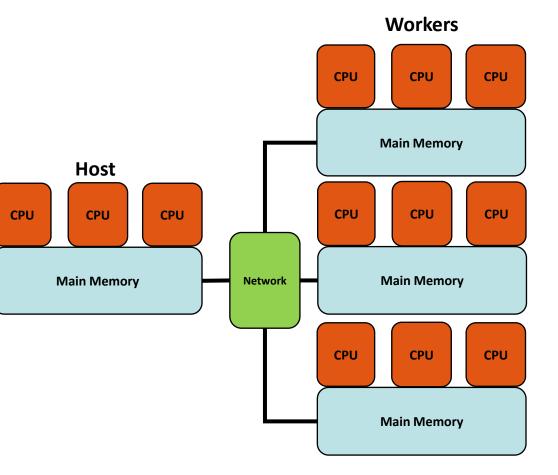

- Better work distribution
- More overhead

Multi-Processing - Splitting Data

Passing only data "chucks" to each worker

Big chunks are generally better than little chunks

for (i in 1:10) { for (j in 1:1000000) { # Execution of code


Distributed Computing on HPC

Distributed Memory Parallelism (Distributed Computing)

- Multiple machines with its own private memory.
- Message Passing Interface (MPI)
- Host schedules the work across the workers

HPC Job Schedulers:

- Portable Batch System (PBS)
- Simple Linux Utility for Resource Management (SLURM)
- IBM Spectrum LSF
- Sun Grid Engine (SGE)

PARALLEL PROGRAMMING IN R

Kristoffer Gulmark Poulsen & Lars Nondal CBS

R Packages - Overview

Compilers (Not covered)

- Rcpp
- *JIT*

parallel package

- multicore
- Snow

foreach loop adaptation of parallel

• doParallel, doSnow, doMC & doMPI...

Tidymodels framework

• Examples of parallel computing

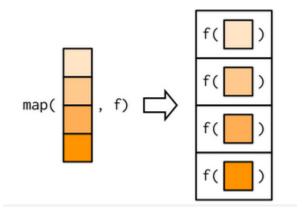
Scalable Frameworks(Not covered)

- future
- SparkR

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Iterations

There are two styles of iterations


for (i in 1:3) print(sqrt(i))

for and while loops

- It is often the most intuitive way to begin.
- Imperative programming .

functional programming

- Readability & code redundancy
- Functionals are a functions that takes a function as an input and returns a vector as output.
- E.g. apply() or map()

R Packages- *Parallel*

- *multicore*: Multi-processing on single machine through forking (Not Covered Today).
- Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.
- *paralellel* serve as "*parallel backend*" to many/most packages, so worth understanding.
- It is all based on *apply* form of R iteration:

Base R	snow
lapply	parLapply
sapply	parSapply
vapply	-
apply(rowwise)	parRapply, parApply(,1)
apply(columnwise)	parCapply, parApply(,2)

R Packages- *Parallel /snow*

Snow (Simple Network of Workstations): Can fork/spawning on multiple machines/clusters.

Functions:

- cl<- makeCluster(n,type ="PSOCK") (Default)
- cl<- makeCluster(n,type ="FORK")
- stopCluster(cl) stops clusters
- clusterExport(cl,data) Copies data to processes
- clusterApply(cl,data,func) Runs analysis in parallel
- clusterApplyLB() dynamic load balancing
- clusterEvalQ(cl, expr) Evaluating an expression
- clusterSplit(cl,data) data splitting

CBS 💥

ClusterApply

```
cl <- makeCluster(4)
clusterExport(cl, "jan2010")</pre>
```

cares <- clusterApply(cl, rep(5,4), do.n.kmeans)</pre>

R Packages- *foreach* loop adaptation of *parallel*

Parallelization using the "for loop" iteration through the *foreach* package.

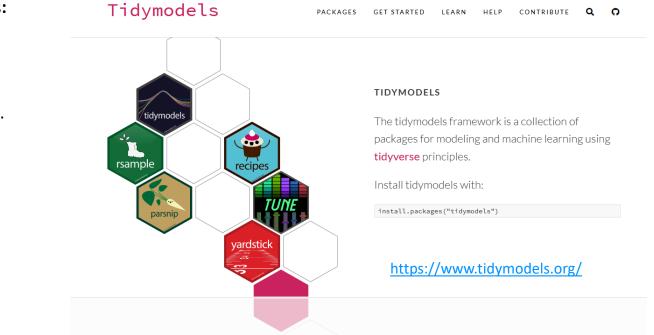
for (i in 1:3) print(sqrt(i))

library(foreach)
foreach (i=1:3) %do% sqrt(i)

library(doParallel)
registerDoParallel(3) # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

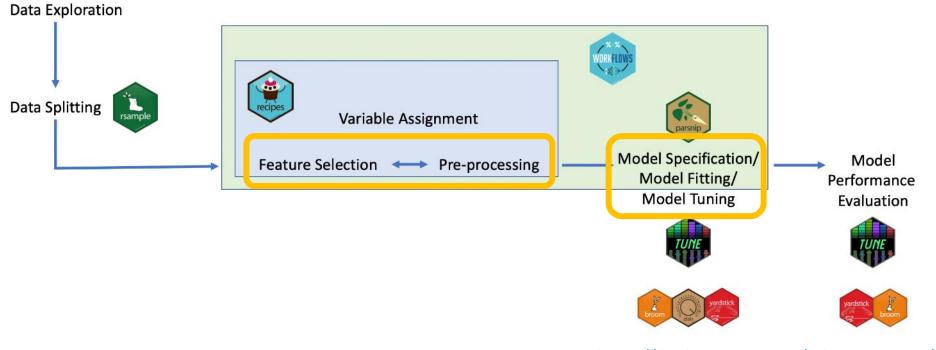
cl <- makePSOCKcluster(3)
registerDoParallel(cl) # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)</pre>

CBS 📉


Many different backends:

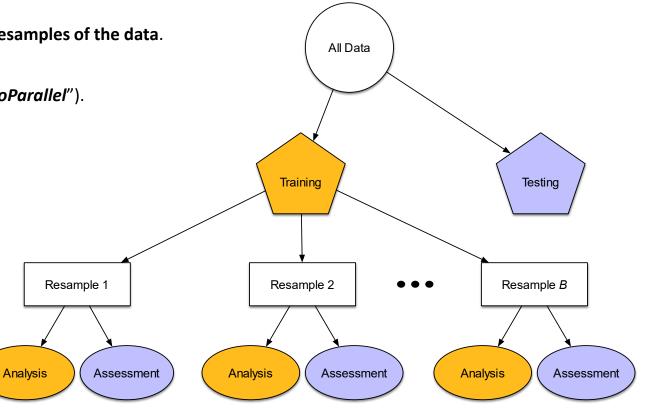
- doParallel <u>https://cran.r-project.org/web/packages/doParallel/index.html</u>
- doSnow <u>https://cran.r-project.org/web/packages/doSNOW/index.html</u>
- doMC <u>https://cran.r-project.org/web/packages/doMC/index.html</u>
- doMPI <u>https://cran.r-project.org/web/packages/doMPI/index.html</u>

Tidymodels


Tidyverse/Tidymodels

- The tidyverse is a language for solving data science challenges with R code.
- Both tidymodels is built on the tidyverse principles:
 - Should be intuitive
 - Consistence syntax: function naming, arguments.

Tidymodels - Workflow


https://jhudatascience.org/tidyversecourse/model.html

Tidymodels - Model Fitting and Tuning

Model performance and optimization is based on resampling methods which are just embarrassing parallel!!

- fit_resamples() computes a set of performance metrics across one or more resamples.
- tune_grid() of performance for tuning parameters across one or more resamples of the data.
- *foreach* package is used in combination with a backend package (e.g. "*doParallel*").
- Many ML/AI packages within Tidymodels have built-in parallelisation.

Tidymodels - Model Fitting and Tuning

nnet_tune <nnet_workflow %>%
tune_grid(hotel_validation,
 grid = nGrid,
 control = control_grid(save_pred = TRUE,parallel_over = "everything"),
 metrics = metric_set(roc_auc))

"resamples"

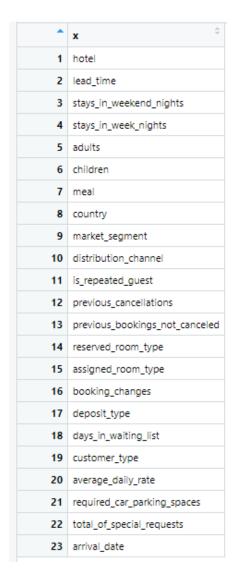
- then tuning will be performed in parallel over resamples alone.
- Within each resample, the preprocessor (i.e. recipe or formula) is reused across all models.

"everything"

- An outer parallel loop will iterate over resamples.
- An inner parallel loop will iterate over all **unique combinations of preprocessor** and **model tuning parameters** for that specific resample.
- This will result in the preprocessor being re-processed multiple times
- Pre-processing depended.

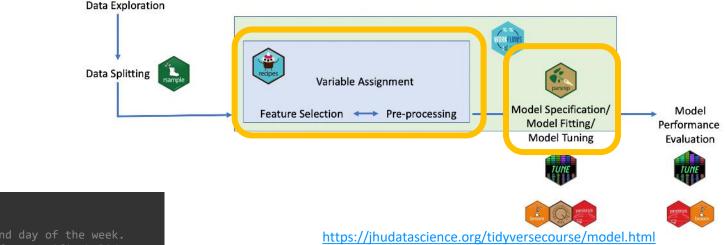
Tidymodels - Case

- Hotel bookings data from Antonio, Almeida, and Nunes (2019)
- Aim: to predict which hotels are preferred by families with children.
- Data frame: 50.000 entries and 23 variables


Data Splitting

set.seed(123)

```
# Split into Training and Testing set
splits <- initial_split(hotels, strata = children)
hotel_train <- training(splits)
hotel_test <- testing(splits)</pre>
```


Methodology used: Classification

- Random Forrest ranger::ranger()
- Neural Network *nnet::nnet()*

https://www.tidymodels.org/start/case-study/

Tidymodels - Model Tuning

Pre-processing with recipes

rf_recipe < recipe(children ~ ., data = hotel_train) %>%
 step_date(arrival_date) %>% # creates predictors for the year, month, and day of the week.
 step_holiday(arrival_date) %>% # generates a set of indicator variables for specific holidays.
 step_rm(arrival_date) #removes variables;

Model Specifications

Cores = parallel::detectCores()

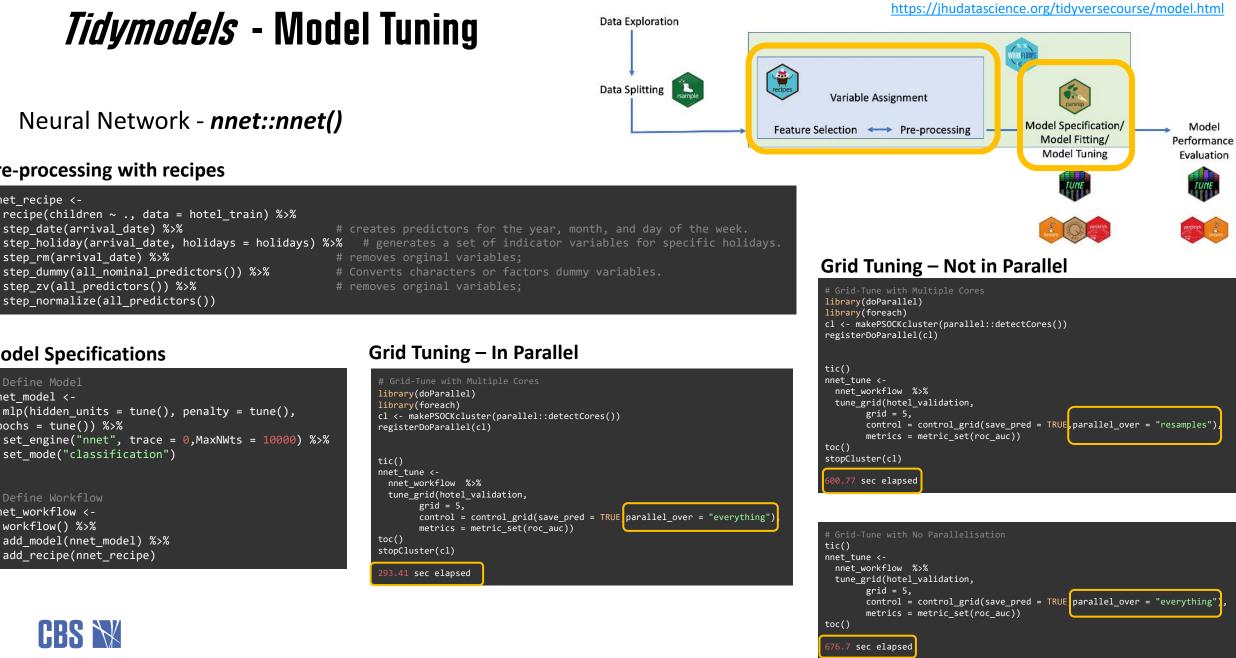
set.seed(345)
Define Model
rf_model < rand_forest(mtry = tune(), min n = tune(), trees = 1000) %>%
 set_engine("ranger", num.threads = Cores) %>%
 set_mode("classification")

Random Forrest - *ranger::ranger()*

Define Workflow

rf_workflow <workflow() %>%
add_model(rf_model) %>%
add_recipe(rf_recipe)

Grid Tuning – In Parallel


<pre># Grid-Tune with 8(4) Cores tic() rf_tune <- rf_workflow %>% tune_grid(hotel_validation, grid = nGrid, control = control_grid(save_pred = TRUE), metrics = metric_set(roc_auc))</pre>	# Gric tic() rf_tur rf_w tune
toc()	toc()
47.3 sec elapsed	208.8

Grid Tuning – Not in Parallel

Tidymodels - Model Tuning

Neural Network - *nnet::nnet()*

Pre-processing with recipes

nnet recipe <-</pre>

recipe(children ~ ., data = hotel train) %>% step date(arrival date) %>% step rm(arrival date) %>% step dummy(all nominal predictors()) %>% step zv(all predictors()) %>% step normalize(all predictors())

Model Specifications

Define Model nnet model <mlp(hidden units = tune(), penalty = tune(), epochs = tune()) %>% set engine("nnet", trace = 0,MaxNWts = 10000) %>% set_mode("classification")

Define Workflow nnet workflow <workflow() %>%

add model(nnet model) %>% add recipe(nnet recipe)

Distributed Computing on UCloud (SLURM cluster)

Neural Network - nnet::nnet()

```
# Get Input arguments
args = commandArgs(trailingOnly=TRUE)
nproces = as.numeric(args[1])
```

```
# Get Cluster Info
hostlist <- paste(unlist(read.delim(file="hostnames.txt", header=F, sep =" ")))
for (i in 0:length(hostlist)){
    if (i == 0){
    hosts <- rep(hostlist[i],nproces)
    } else {
    hosts <-c(hosts, rep(hostlist[i],nproces))
    }
}</pre>
```

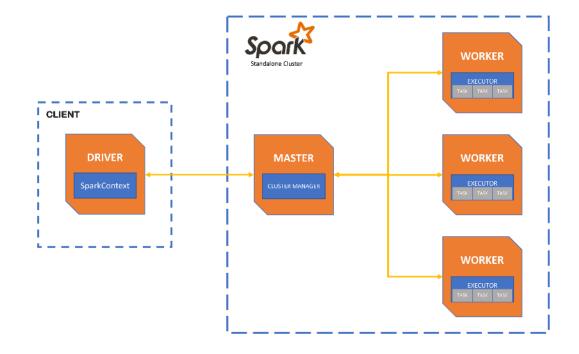
tic()
Starting Up Cluster
cl <- makePSOCKcluster(names=hosts)
#cl <- makePSOCKcluster(parallel::detectCores())</pre>

registerDoParallel(cl)

Grid-Tune nnet_tune <nnet_workflow %>% tune_grid(hotel_validation, grid = nGrid, control = control_grid(save_pred = TRUE,parallel_over = "everything"), metrics = metric_set(roc_auc)) toc()

stopCluster(cl)

https://cbshpc.github.io/Tutorials/SLURM/SLURM/


https://cloud.sdu.dk/app/jobs/pro perties/792600?app=

#run the parallel calculation
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
trials <- 200000
system.time({
r <- foreach(icount(trials), .combine=rbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)
</pre>

})

stopCluster(cl)

Apache Spark (RSpark) Cluster on UCloud

https://docs.cloud.sdu.dk/Apps/jupyterlab.html?highlight=jupyterlab

https://docs.cloud.sdu.dk/Apps/sparkcluster.html?highlight=spark

https://cloud.sdu.dk/app/jobs/create?app=sparkcluster&version=3.4.0

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal CBS

