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Program Today

▪ Basic theory of parallel programming

▪ Parallel programming basics within Python

▪ Parallelization of a ML models scikit-learn framework.

▪ Distributed parallelization on a SLURM Cluster.

▪ https://cbs-hpc.github.io/
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https://cbs-hpc.github.io/


What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM
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Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

Message Passing Interface (MPI)

▪ A standard protocol for passing data and other 

messages between nodes in a cluster. 

Simple Linux Utility for Resource Management (SLURM) 

▪ A free MPI framework for Linux and Unix-like kernels. 

▪ Network of processors, hard drives & other hardware



Accessing an HPC…

Login Nodes

Access to assigned 
compute & storage nodes

Log in 
(ID + Password)
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Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC

5



When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow
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Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.
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Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks
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Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous



Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily 

simultaneously.
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Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time



Parallel Programming
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Parallel Programming
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Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines. 

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to 

communicate.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer. 
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Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU



Terminology

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.

▪ Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

▪ Compiled - All code is converted to machine code and then program is executed. (C & Fortran)
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Code

Process

Data

Threads



SIMD & Multi-Threading 
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Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on 

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.



SIMD & Multi-Threading in Python and R
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SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection) 

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR



Multi-Threading I/O
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Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process. 

▪ Single machine
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Spawn/Socket (PSOCK)

▪ Available on Unix and Windows. 

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads



Multi-Processing – Load Balancing
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Dynamic balancer/scheduler  

▪ Better work distribution

▪ More overhead

Master

Work load 
1

Work load 
2

Workload 
3

Worker 1

Worker 2

Workload 
4

Master

Worker 1Workload 1

Workload 2

Workload 3

Worker 2

Worker 3

Master/Worker Approach

Master

Work load 
1

Work load 2

Workload 
3

Worker 1  

Worker 2

Workload 
4

No distribution 

▪ Low Overhead

▪ Bad load balance.



Multi-Processing – Splitting Data

Passing only data “chucks” to each worker
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Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks



Distributed Computing on HPC
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Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI) 

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS) 

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU
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Python Libraries - Overview
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Built-in Libraries

▪ Threading

▪ Multiprocessing

▪ concurrent.futures

Compilers

▪ Numba

Parallelization Libraries

▪ Joblib

▪ Loky

▪ Ipyparallel

▪ Ray 

▪ Dask

AI/ML Frameworks

▪ Scikit-Learn 

▪ Pytorch (torch.multiprocessing ,torch.distributed)

▪ Tensorflow



Iterations
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There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming 

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a 

vector as output. 

▪ E.g. apply() or map()

for i in range(3):         
np.sqrt(i)



Python Library - Numba
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import math
import numba
import GPUtil

# No Compiling
def f(x,y):
  return math.pow(x,3.0) + 4*math.sin(y)

# JIT Compiling (CPUs)
@numba.vectorize([numba.float64(numba.float64, numba.float64)], target='cpu')
def f_numba_cpu(x,y):
  return math.pow(x,3.0) + 4*math.sin(y)

# JIT Compiling (GPUs)
if GPUtil.getAvailable():
  @numba.vectorize([numba.float64(numba.float64, numba.float64)], 
target='cuda')
  def f_numba_gpu(x,y):
    return math.pow(x,3.0) + 4*math.sin(y)

▪ Numba a dynamic just-in-time (JIT) compiler.

▪ Write a pure Python function which can be JIT compiled to 
native machine instructions.

▪ Similar in performance to C, C++ and Fortran, by simply 
adding the decorator @jit in your function. 

▪ @jit compilation adds overhead to the runtime of the 
function (first time it is run).

▪ CPU and GPU support.

import numba

# Define a function to be JIT compiled
@numba.jit
def my_function(x):

y = x ** 2 + 2 * x + 1
return y

# Call the function
result = my_function(5)
print(result)



Python Library - Threading

▪ Multi-theading

▪ Concurrent not parallel - subject to the GIL

▪ Can increase speed for I/O-bound applications.

▪ Single-machine

Functions:

▪ .Thread()

▪ .start()

▪ .join()
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import threading as th

def print_cube(num):
# function to print cube of given num
print("Cube: {}" .format(num * num * num))

def print_square(num):
# function to print square of given num
print("Square: {}" .format(num * num))

if __name__ =="__main__":
# creating thread
t1 = th.Thread(target=print_square, args=(10,))
t2 = th.Thread(target=print_cube, args=(10,))

# starting thread 1
t1.start()
# starting thread 2
t2.start()

# wait until thread 1 is completely executed
t1.join()
# wait until thread 2 is completely executed
t2.join()

# both threads completely executed
print("Done!")



Python Library - Multiprocessing
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Methods:

▪ ‘spawn’

▪ ‘fork’

▪ Single-machine

Functions:

P = mp.Process(target=x, args=y)

P.start()

P.join()

import multiprocessing as mp

def print_cube(num):
  # function to print cube of given num
  print("Cube: {}" .format(num * num * num))

def print_square(num):
  # function to print square of given num
  print("Square: {}" .format(num * num))

if __name__ =="__main__":
  mp.set_start_method('spawn') 
  # mp.set_start_method('fork')

  # creating process
  p1 = mp.Process(target=print_square, args=(10,))
  p2 = mp.Process(target=print_cube, args=(10,))

  # starting process 1
  p1.start()
  # starting process 2
  p2.start()

  # wait until process 1 is completely executed
  p1.join()
  # wait until process 2 is completely executed
  p2.join()

  # both process completely executed
  print("Done!")



Python Library - Multiprocessing
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Creating a worker pool:

▪ myPool = Pool(nworkers)

Functions:

▪ myPool.apply()

▪ myPool.apply_async()

▪ myPool.map()

▪ myPool.map_async()

▪ myPool.imap()

▪ myPool.imap_unordered()

▪ myPool.starmap()

▪ myPool.starmap_async()

import multiprocessing as mp

def print_cube(num):
  # function to print cube of given num
  print("Cube: {}" .format(num * num * num))

X = [100,500, 1000, 3044, 233]

# protect the entry point
if __name__ == '__main__':
  mp.set_start_method('spawn') 
  # mp.set_start_method('fork')

  # create a process pool with 4 workers
  mypool = mp.Pool(processes=4)
  value = mypool.map(print_cube,X)

if __name__ == '__main__':
  mp.set_start_method('spawn') 
  # mp.set_start_method('fork')

  with mp.Pool(processes=i) as mypool:
      value = mypool.map(cube, X)



Python Library - concurrent.futures

Multiprocessing Pool vs ProcessPoolExecutor

https://superfastpython.com/multiprocessing-pool-vs-
processpoolexecutor/

ThreadPoolExecutor vs. Thread

https://superfastpython.com/threadpoolexecutor-vs-
threads/#Similarities_Between_ThreadPoolExecutor_and_Thread

Concurrent not parallel- subject to the GIL
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# create a thread pool
executor = ThreadPoolExecutor(max_workers=10)

# create a process pool
executor = ProcessPoolExecutor(max_workers=10)

# submit a task to the pool and get a future immediately
future = executor.submit(task, item)

# get the result once the task is done
result = future.result()

# Shutdown pool
executor.shutdown()

with ThreadPoolExecutor(max_workers=10) as executor:
# call a function on each item in a list and process results
for result in executor.map(task, items):
# process result...
# ...
# shutdown is called automatically

https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread


Python Library - Scikit-Learn
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Depending on the type of estimator parallelism:

OpenMP:
Is used to parallelize code written in Cython or C, relying on multi-
threading exclusively. By default, the implementations using OpenMP will 
use as many threads as possible, i.e. as many threads as logical cores.

MKL, OpenBLAS or BLIS:
Scikit-learn relies heavily on NumPy and SciPy, which internally call 
multi-threaded linear algebra routines (BLAS & LAPACK) implemented 
in libraries such as MKL, OpenBLAS or BLIS.

OMP_NUM_THREADS=4 python my_script.py

# You can control the exact number of threads used by BLAS 
for each library using environment variables, namely:

MKL_NUM_THREADS # sets the number of thread MKL uses,
OPENBLAS_NUM_THREADS # sets the number of threads OpenBLAS uses
BLIS_NUM_THREADS # sets the number of threads BLIS uses

joblib backends:
from joblib import parallel_backend

# Default
with parallel_backend('loky'):
with parallel_backend('mulitprocessing'):
with parallel_backend('dask'):
with parallel_backend('ray'):
with parallel_backend('ipyparallel'):
with parallel_backend('threading'):
with parallel_backend('spark'):

# Your scikit-learn code here



Scikit-Learn – joblib backends
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import numpy as np
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6, 30),
'gamma': np.logspace(-8, 8, 30),
'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits()

with parallel_backend('multiprocessing',n_jobs=2):
 search.fit(digits.data,digits.target)

# Fitting 10 folds for each of 5 candidates, totaling 50 fits
# 8.597755701979622

with parallel_backend('loky',n_jobs=16):
search.fit(digits.data,digits.target)

# Fitting 10 folds for each of 5 candidates, totaling 50 fits
# 2.7689956098329276

with parallel_backend('multiprocessing',n_jobs=16):
search.fit(digits.data,digits.target)

# Fitting 10 folds for each of 5 candidates, totaling 50 fits
# 2.2656688350252807

with parallel_backend('threading',n_jobs=16):
search.fit(digits.data,digits.target)

# Fitting 10 folds for each of 5 candidates, totaling 50 fits
# 1.5711621041409671



Scikit-Learn – Ray
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import ray
from ray.util.joblib import register_ray

# create local ray cluster
ray.init(num_cpus=16)
# connect to cluster
register_ray()

with parallel_backend('ray’):
search.fit(digits.data,digits.target)

# Fitting 10 folds for each of 5 candidates, totaling 50 fits
# 3.9540881011635065

ray.shutdown()

import numpy as np
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6, 30),
'gamma': np.logspace(-8, 8, 30),
'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits()



Distributed Computing on UCloud (SLURM cluster)
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Scikit-Learn – Ray

https://cloud.sdu.dk/app/jobs/pro
perties/792600?app=

https://cbs-
hpc.github.io/Tutorials/SLURM/SLURM/ 

import ray
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
from ray.util.joblib import register_ray
register_ray()

param_space = {
  'C': np.logspace(-6, 6, 30),
  'gamma': np.logspace(-8, 8, 30),
  'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=500,verbose=1)
digits = load_digits()

ray.init(address="auto")
with parallel_backend('ray’):
 search.fit(digits.data,digits.target)

ray.shutdown()

https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
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