
HPC & PARALLEL PROGRAMMING IN PYTHON
New cloud computing possibilities for researchers & students

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

Program Today

▪ Basic theory of parallel programming

▪ Parallel programming basics within Python

▪ Parallelization of a ML models scikit-learn framework.

▪ Distributed parallelization on a SLURM Cluster.

▪ https://cbs-hpc.github.io/

2

https://cbs-hpc.github.io/

What is High Performance Computing (supercomputer)?

Choice of software
and resources

CPU

GPU

Storage

RAM

3

Hardware

▪ Core: Processing unit on a single machine.

▪ Node: A single machine.

▪ Cluster: Network of multiple nodes.

Message Passing Interface (MPI)

▪ A standard protocol for passing data and other

messages between nodes in a cluster.

Simple Linux Utility for Resource Management (SLURM)

▪ A free MPI framework for Linux and Unix-like kernels.

▪ Network of processors, hard drives & other hardware

Accessing an HPC…

Login Nodes

Access to assigned
compute & storage nodes

Log in
(ID + Password)

4

Accessing an HPC…

▪ Your assigned resources (HW + SW) can be used from your PC

5

When HPC might be for you

▪ Applying ML/AI

▪ Running simulation and resampling techniques

▪ Working with large datasets

▪ My laptop runs out of memory

▪ My workflow is running very slow

6

Why is it taking so long?

Computation can be slow for one of three reasons:

CPU bound when computational time is restricted by processor.

I/O bound when reading from and to disk/database is limiting factor.

Memory bound when limited by the memory required to hold the working data.

8

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time

▪ Synchronous tasks

9

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Sequential Computing

▪ Single core processor

▪ Multiple tasks which runs overlapping but not at same time.

▪ Synchronous tasks

10

Parallel Computing

▪ Multi-core processor

▪ Multiple tasks which runs overlapping.

▪ Synchronous/Asynchronous

Parallel Programming
Concurrency

▪ Executing multiple tasks at the same time but not necessarily

simultaneously.

11

Parallelism

▪ One task is split into subtasks and run in parallel at the exact same time.

▪ Run multiple tasks in in parallel on multiple CPUs at the exact same time

Parallel Programming

12

Parallel Programming

13

Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer.

14

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Main Memory

CPU CPU CPU

Terminology

▪ Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

▪ Thread: Path of execution within a single process.

▪ Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

▪ Compiled - All code is converted to machine code and then program is executed. (C & Fortran)

15

Code

Process

Data

Threads

SIMD & Multi-Threading

16

Code

Process

Data

Threads

Code Data

Threads

Multi-threaded

Single Instruction, Multiple Data (SIMD)

▪ single thread/processor where each processing unit (PU) performs the same instruction on

different data.

▪ Vectorization.

Multi-Threading

▪ Threads are multiple paths of execution within a single process.

▪ Appears as a single process.

Single instruction, multiple threads (SIMT)

Python and R are examples of single-threaded programming languages.

SIMD & Multi-Threading in Python and R

17

SIMT is achieved in several ways:

Through external libraries

▪ Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.

▪ Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.

▪ NumPy, SciPy and Pandas

▪ built-in R functions

“Static Compilers”

▪ OpenMP/GCC (GNU Compiler Collection)

▪ Rcpp

▪ Cython

Dynamic/JIT Compilers:

▪ Numba

▪ JITR

Multi-Threading I/O

18

Fork

▪ Only available on UNIX machines (Linux, Mac, and the likes).

▪ The child process is an identical “cloned” of the parent process.

▪ Single machine

19

Spawn/Socket (PSOCK)

▪ Available on Unix and Windows.

▪ The parent process starts a fresh/empty process.

▪ Code & data needs to copied onto the new child process

▪ Can be scaled to multiple machines/cluster.

Multi-Processing

Code

Parent Process

Data

Threads

Code

Child Process

Data

Threads

Code

Child Process

Data

Threads

Multi-Processing – Load Balancing

20

Dynamic balancer/scheduler

▪ Better work distribution

▪ More overhead

Master

Work load
1

Work load
2

Workload
3

Worker 1

Worker 2

Workload
4

Master

Worker 1Workload 1

Workload 2

Workload 3

Worker 2

Worker 3

Master/Worker Approach

Master

Work load
1

Work load 2

Workload
3

Worker 1

Worker 2

Workload
4

No distribution

▪ Low Overhead

▪ Bad load balance.

Multi-Processing – Splitting Data

Passing only data “chucks” to each worker

21

Master

Code

Worker 1

Data

Threads

Code

Worker 2

Data

Threads

Big chunks are generally better than little chunks

Distributed Computing on HPC

22

Distributed Memory Parallelism (Distributed Computing)

▪ Multiple machines with its own private memory.

▪ Message Passing Interface (MPI)

▪ Host schedules the work across the workers

HPC Job Schedulers:

▪ Portable Batch System (PBS)

▪ Simple Linux Utility for Resource Management (SLURM)

▪ IBM Spectrum LSF

▪ Sun Grid Engine (SGE)

Main Memory

CPU CPU CPU

Main Memory

CPU CPU CPU

Main Memory

CPUCPU CPU

Network

Workers

Host

Main Memory

CPU CPU CPU

PARALLEL PROGRAMMING IN PYTHON

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

Python Libraries - Overview

24

Built-in Libraries

▪ Threading

▪ Multiprocessing

▪ concurrent.futures

Compilers

▪ Numba

Parallelization Libraries

▪ Joblib

▪ Loky

▪ Ipyparallel

▪ Ray

▪ Dask

AI/ML Frameworks

▪ Scikit-Learn

▪ Pytorch (torch.multiprocessing ,torch.distributed)

▪ Tensorflow

Iterations

25

There are two styles of iterations

for and while loops

▪ It is often the most intuitive way to begin.

▪ Imperative programming .

functional programming

▪ Readability & code redundancy

▪ Functionals are a functions that takes a function as an input and returns a

vector as output.

▪ E.g. apply() or map()

for i in range(3):
np.sqrt(i)

Python Library - Numba

27

import math
import numba
import GPUtil

No Compiling
def f(x,y):
 return math.pow(x,3.0) + 4*math.sin(y)

JIT Compiling (CPUs)
@numba.vectorize([numba.float64(numba.float64, numba.float64)], target='cpu')
def f_numba_cpu(x,y):
 return math.pow(x,3.0) + 4*math.sin(y)

JIT Compiling (GPUs)
if GPUtil.getAvailable():
 @numba.vectorize([numba.float64(numba.float64, numba.float64)],
target='cuda')
 def f_numba_gpu(x,y):
 return math.pow(x,3.0) + 4*math.sin(y)

▪ Numba a dynamic just-in-time (JIT) compiler.

▪ Write a pure Python function which can be JIT compiled to
native machine instructions.

▪ Similar in performance to C, C++ and Fortran, by simply
adding the decorator @jit in your function.

▪ @jit compilation adds overhead to the runtime of the
function (first time it is run).

▪ CPU and GPU support.

import numba

Define a function to be JIT compiled
@numba.jit
def my_function(x):

y = x ** 2 + 2 * x + 1
return y

Call the function
result = my_function(5)
print(result)

Python Library - Threading

▪ Multi-theading

▪ Concurrent not parallel - subject to the GIL

▪ Can increase speed for I/O-bound applications.

▪ Single-machine

Functions:

▪ .Thread()

▪ .start()

▪ .join()

28

import threading as th

def print_cube(num):
function to print cube of given num
print("Cube: {}" .format(num * num * num))

def print_square(num):
function to print square of given num
print("Square: {}" .format(num * num))

if __name__ =="__main__":
creating thread
t1 = th.Thread(target=print_square, args=(10,))
t2 = th.Thread(target=print_cube, args=(10,))

starting thread 1
t1.start()
starting thread 2
t2.start()

wait until thread 1 is completely executed
t1.join()
wait until thread 2 is completely executed
t2.join()

both threads completely executed
print("Done!")

Python Library - Multiprocessing

29

Methods:

▪ ‘spawn’

▪ ‘fork’

▪ Single-machine

Functions:

P = mp.Process(target=x, args=y)

P.start()

P.join()

import multiprocessing as mp

def print_cube(num):
 # function to print cube of given num
 print("Cube: {}" .format(num * num * num))

def print_square(num):
 # function to print square of given num
 print("Square: {}" .format(num * num))

if __name__ =="__main__":
 mp.set_start_method('spawn')
 # mp.set_start_method('fork')

 # creating process
 p1 = mp.Process(target=print_square, args=(10,))
 p2 = mp.Process(target=print_cube, args=(10,))

 # starting process 1
 p1.start()
 # starting process 2
 p2.start()

 # wait until process 1 is completely executed
 p1.join()
 # wait until process 2 is completely executed
 p2.join()

 # both process completely executed
 print("Done!")

Python Library - Multiprocessing

30

Creating a worker pool:

▪ myPool = Pool(nworkers)

Functions:

▪ myPool.apply()

▪ myPool.apply_async()

▪ myPool.map()

▪ myPool.map_async()

▪ myPool.imap()

▪ myPool.imap_unordered()

▪ myPool.starmap()

▪ myPool.starmap_async()

import multiprocessing as mp

def print_cube(num):
 # function to print cube of given num
 print("Cube: {}" .format(num * num * num))

X = [100,500, 1000, 3044, 233]

protect the entry point
if __name__ == '__main__':
 mp.set_start_method('spawn')
 # mp.set_start_method('fork')

 # create a process pool with 4 workers
 mypool = mp.Pool(processes=4)
 value = mypool.map(print_cube,X)

if __name__ == '__main__':
 mp.set_start_method('spawn')
 # mp.set_start_method('fork')

 with mp.Pool(processes=i) as mypool:
 value = mypool.map(cube, X)

Python Library - concurrent.futures

Multiprocessing Pool vs ProcessPoolExecutor

https://superfastpython.com/multiprocessing-pool-vs-
processpoolexecutor/

ThreadPoolExecutor vs. Thread

https://superfastpython.com/threadpoolexecutor-vs-
threads/#Similarities_Between_ThreadPoolExecutor_and_Thread

Concurrent not parallel- subject to the GIL

31

create a thread pool
executor = ThreadPoolExecutor(max_workers=10)

create a process pool
executor = ProcessPoolExecutor(max_workers=10)

submit a task to the pool and get a future immediately
future = executor.submit(task, item)

get the result once the task is done
result = future.result()

Shutdown pool
executor.shutdown()

with ThreadPoolExecutor(max_workers=10) as executor:
call a function on each item in a list and process results
for result in executor.map(task, items):
process result...
...
shutdown is called automatically

https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread

Python Library - Scikit-Learn

32

Depending on the type of estimator parallelism:

OpenMP:
Is used to parallelize code written in Cython or C, relying on multi-
threading exclusively. By default, the implementations using OpenMP will
use as many threads as possible, i.e. as many threads as logical cores.

MKL, OpenBLAS or BLIS:
Scikit-learn relies heavily on NumPy and SciPy, which internally call
multi-threaded linear algebra routines (BLAS & LAPACK) implemented
in libraries such as MKL, OpenBLAS or BLIS.

OMP_NUM_THREADS=4 python my_script.py

You can control the exact number of threads used by BLAS
for each library using environment variables, namely:

MKL_NUM_THREADS # sets the number of thread MKL uses,
OPENBLAS_NUM_THREADS # sets the number of threads OpenBLAS uses
BLIS_NUM_THREADS # sets the number of threads BLIS uses

joblib backends:
from joblib import parallel_backend

Default
with parallel_backend('loky'):
with parallel_backend('mulitprocessing'):
with parallel_backend('dask'):
with parallel_backend('ray'):
with parallel_backend('ipyparallel'):
with parallel_backend('threading'):
with parallel_backend('spark'):

Your scikit-learn code here

Scikit-Learn – joblib backends

33

import numpy as np
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6, 30),
'gamma': np.logspace(-8, 8, 30),
'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits()

with parallel_backend('multiprocessing',n_jobs=2):
 search.fit(digits.data,digits.target)

Fitting 10 folds for each of 5 candidates, totaling 50 fits
8.597755701979622

with parallel_backend('loky',n_jobs=16):
search.fit(digits.data,digits.target)

Fitting 10 folds for each of 5 candidates, totaling 50 fits
2.7689956098329276

with parallel_backend('multiprocessing',n_jobs=16):
search.fit(digits.data,digits.target)

Fitting 10 folds for each of 5 candidates, totaling 50 fits
2.2656688350252807

with parallel_backend('threading',n_jobs=16):
search.fit(digits.data,digits.target)

Fitting 10 folds for each of 5 candidates, totaling 50 fits
1.5711621041409671

Scikit-Learn – Ray

34

import ray
from ray.util.joblib import register_ray

create local ray cluster
ray.init(num_cpus=16)
connect to cluster
register_ray()

with parallel_backend('ray’):
search.fit(digits.data,digits.target)

Fitting 10 folds for each of 5 candidates, totaling 50 fits
3.9540881011635065

ray.shutdown()

import numpy as np
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6, 30),
'gamma': np.logspace(-8, 8, 30),
'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits()

Distributed Computing on UCloud (SLURM cluster)

36

Scikit-Learn – Ray

https://cloud.sdu.dk/app/jobs/pro
perties/792600?app=

https://cbs-
hpc.github.io/Tutorials/SLURM/SLURM/

import ray
from joblib import parallel_backend
from sklearn.datasets import load_digits
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
from ray.util.joblib import register_ray
register_ray()

param_space = {
 'C': np.logspace(-6, 6, 30),
 'gamma': np.logspace(-8, 8, 30),
 'tol': np.logspace(-4, -1, 30),
'class_weight': [None, 'balanced'],
}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=500,verbose=1)
digits = load_digits()

ray.init(address="auto")
with parallel_backend('ray’):
 search.fit(digits.data,digits.target)

ray.shutdown()

https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/

QUESTIONS?

Kristoffer Gulmark Poulsen & Lars Nondal
CBS

	Slide 1: HPC & Parallel Programming in Python
	Slide 2: Program Today
	Slide 3: What is High Performance Computing (supercomputer)?
	Slide 4: Accessing an HPC…
	Slide 5: Accessing an HPC…
	Slide 6: When HPC might be for you
	Slide 8: Why is it taking so long?
	Slide 9: Parallel Programming
	Slide 10: Parallel Programming
	Slide 11: Parallel Programming
	Slide 12: Parallel Programming
	Slide 13: Parallel Programming
	Slide 14: Models for Parallel Programming
	Slide 15: Terminology
	Slide 16: SIMD & Multi-Threading
	Slide 17: SIMD & Multi-Threading in Python and R
	Slide 18: Multi-Threading I/O
	Slide 19: Multi-Processing
	Slide 20: Multi-Processing – Load Balancing
	Slide 21: Multi-Processing – Splitting Data
	Slide 22: Distributed Computing on HPC
	Slide 23: Parallel Programming in Python
	Slide 24: Python Libraries - Overview
	Slide 25: Iterations
	Slide 27: Python Library - Numba
	Slide 28: Python Library - Threading
	Slide 29: Python Library - Multiprocessing
	Slide 30: Python Library - Multiprocessing
	Slide 31: Python Library - concurrent.futures
	Slide 32: Python Library - Scikit-Learn
	Slide 33: Scikit-Learn – joblib backends
	Slide 34: Scikit-Learn – Ray
	Slide 36: Distributed Computing on UCloud (SLURM cluster)
	Slide 38: Questions?

