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Program Today

Basic theory of parallel programming

Parallel programming basics within Python

Parallelization of a ML models scikit-learn framework.

Distributed parallelization on a SLURM Cluster.

https://cbs-hpc.github.io/
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https://cbs-hpc.github.io/

What is High Performance GComputing (supercomputer)?

= Network of processors, hard drives & other hardware

Hardware Message Passing Interface (MPI) Simple Linux Utility for Resource Management (SLURM)
= Core: Processing unit on a single machine. = A standard protocol for passing data and other = A free MPI framework for Linux and Unix-like kernels.
= Node: A single machine. messages between nodes in a cluster.

= Cluster: Network of multiple nodes.
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Accessing an HPGC...

;\ ] mmE
0 ] H B
P - ] mm B
‘ Login Nodes [l [] . [ [l .
Log in Access to assigned
(ID + Password) compute & storage nodes
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Accessing an HPGC...

= Your assigned resources (HW + SW) can be used from your PC

x
I .
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When HPC might be for you

= Applying ML/AI

= Running simulation and resampling techniques
= Working with large datasets

= My laptop runs out of memory

= My workflow is running very slow
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Why is it taking so long?

Computation can be slow for one of three reasons:

L_omjer CPU burst
. . . . Shorter I/0O Ope_ra‘tion
CPU bound when computational time is restricted by processor.

1/0 bound when reading from and to disk/database is limiting factor. cPU Bost] [[CPU Bast | V[ CPUBast | [[CPU Burst]

Memory bound when limited by the memory required to hold the working data.

Shorter CPU burst Longer I/O Operations

CPU CPU CPU
burst burst burst
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Parallel Programming

Sequential Computing Parallel Computing
= Single core processor = Multi-core processor
= Multiple tasks which runs overlapping but not at same time = Multiple tasks which runs overlapping.
= Synchronous tasks . = Synchronous/Asynchronous
Sequential
Processing
Start
Parallel
Processing
L
Iteration 1 ST
L
Iteration 2 Iteration 1 Iteration 2 [teration 3
| \/
! .
teration 3 End
L
End
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Parallel Programming

Sequential Computing
= Single core processor
= Multiple tasks which runs overlapping but not at same time.

= Synchronous tasks
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Parallel Computing
= Multi-core processor

= Multiple tasks which runs overlapping.

= Synchronous/Asynchronous

S e

S e

CHOP

STIR
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Parallel Programming

Concurrency Parallelism

= Executing multiple tasks at the same time but not necessarily = One task is split into subtasks and run in parallel at the exact same time.

simultaneously. = Run multiple tasks in in parallel on multiple CPUs at the exact same time

T k> — CHOP

SR - STIR
GBS i
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Parallel Programming

Data Parallelism

by

Task || Task || Task || Task || Task || Task
1 1 1 1 1 1
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Task
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Parallel Programming

Speedup
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Models for Parallel Programming

Shared Memory Parallelism (SMP) work is divided between multiple cores running on a single machine.

Main Memory

Distributed Memory Parallelism (Distributed Computing) work is divided between multiple machines.

Embarrassing/ Perfectly Parallel - the tasks can be run independently, and they don’t need to

communicate.
Network Main Memory

Implicit/Hidden Parallelism - is implemented automatically by the Compiler, Interpreter or Library.

Explicit Parallelism - is written into the source code by the Programmer.

Main Memory
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Terminology

= Process: Execution of a program . A given executable (e.g., Python or R) may start up multiple processes.

Thread: Path of execution within a single process.

Interpreted - High-level code converted to machine code and executed line by line. (Python & R)

Compiled - All code is converted to machine code and then program is executed. (C & Fortran)

GBS i
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Process

Code
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Data

Threads
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SIMD & M“Iti'Threading SIMD | Instruction pool

Single Instruction, Multiple Data (SIMD)

= single thread/processor where each processing unit (PU) performs the same instruction on

different data.

Data pool

=
(=
>
—
(@]
=
o
>

= Vectorization.

(

Multi-Threading

/ Process \

. . . . . Iti-threaded
= Threads are multiple paths of execution within a single process. [ ] [ . Multthreaded )
Code Data

N
Code ] [ Data
v

~

J

= Appears as a single process.

~

Threads Threads

Single instruction, multiple threads (SIMT) \ )

A

/)

top - 15:12:02 up 2 days, 54 min, O users, load average: 6.42, 6.45, 6.45
. . Tasks: 18 total, 1 running, 9 sleeping, @ stopped, 0 zombie
Python and R are examples of single-threaded programming languages. ACou(s): 110 us, .3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0hi, .85, 0. st
MiB Mem : 385583.7 total, 193583.0 free, 102124.0 used, 89876.6 buff/cache
MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.8 avail Mem

PID USER I VIRT RES SHR %CPU  MEM TIME+ COMMAND
243 ucloud 20 0 3970788 962704 74288 @278.1 WO.2 0:44.50 rsession
202 rstudio+ 20 O 182200 18268 14724 i 8.0 0:01.00 rserver
1 ucloud 200 0 6896 3428 3196 S 0.0 0.0 0:00.05 start-rstu+
7 root 20 0 10420 4920 4376 S 0.0 0.0 0:00.00 sudo
8 root 20 0 200 4 @GS 0.0 0.0 0:00.01 sé-svscan
37 root 20 0 200 4 6S 0.0 0.0 0:00.00 s6-supervi+
198 root 20 0O 200 4 @GS 0.0 0.0 0:00.00 sé6-supervi+
K\ 265 ucloud 206 0 2492 580 512§ 0.6 8.6 08:00.01 sh
" 271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 hash
‘ 273 ucloud 20 @ 10832 3824 3316R 0.0 8.0 0:00.12 top
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SIMD & Multi-Threading in Python and R

SIMT is achieved in several ways:

Through external libraries
= Written in other languages (e.g. C, C++, Fortran) that run multi-threaded.
= Linear algebra routines (BLAS & LAPACK) implemented in libraries such as MKL, OpenBLAS or BLIS.
= NumPy, SciPy and Pandas

= built-in R functions

top - 15:12:02 up 2 days, 54 min, 0 users, load average: 6.42, 6.45, 6.45

“Static Compilers” File Edit Code View Plots Session Build Debug [, 19 tora1, 1 running, 9 sleeping, @ stopped, B zombie
. . . o .- O 2 . b Go to file/functior %Cpu(s): 11.0 us, 0.3 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.8 st
OpenMP/GCC (GNU Compiler Collection) MiB Mem : 385583.7 total, 193583.8 free, 102124.0 used, B9876.6 buff/cache
« Rcpp Console  Terminal Background Jobs MiB Swap: 8192.0 total, 4461.5 free, 3730.5 used. 280235.0 avail Mem
R4.2.1 . jwork/
- Cython N PID USER I VIRT RES SHR ' XCPU MEM  TIME+ COMMAND
A (: matrix( rhorm(n*n), ncol=n, nrow=n ) 243 ucloud 20 O 3970780 962704 0.2 0 rsession
B <- matrix( rnorm(n*n), ncol=n, nrow=n ) 202 rstudio+ 20 0 182200 18268 0.6 o: rserver
C o¢- B Y B 1 ucloud 20 B 689 3428 31965 0.0 0.0 0:00.05 start-rstu+
: : . 7 root 20 0 10420 4920 4376 S 0.0 0.6 0:00.00 sudo
Dynamlc/JIT Compllers. 8 root 20 0 200 4 S 0.0 0.0 0:00.01 sé-svscan
« Numba 37 root 20 0 200 4 ©S 0.0 0.0 0:00.00 sé-supervi+
198 root 2 0 200 4 S 0.0 0.0 0:00.00 sé-supervi+
= JITR 265 ucloud 20 0 2492 580 512 S 0.0 0.8 0:00.01 sh
271 ucloud 20 0 8168 4904 3408 S 0.0 0.0 0:00.01 bash
273 ucloud 20 0 10032 3824 3316R 6.0 0.0 0:00.12 top
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Multi-Threading 1/0

This is how an |/O-bound application might look:

Vo
Waiting Request 1 Request 2 Request 3
A . A : A '
' v Y Y
CPU
Processing
Time >

From https:/realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence
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The speedup gained from multithreading /O bound problems can be understood from the
following image.

Request 1
W;?n A Request 2
] A Request 3
: A :

.

Thread 1 |

Thread 2 ‘
Thread 3

CPU
Processing

Time >
From https://realpython.com/, distributed via a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported licence
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Multi-Processing

Fork

= Only available on UNIX machines (Linux, Mac, and the likes).

* The child process is an identical “cloned” of the parent process.

= Single machine

Spawn/Socket (PSOCK)

= Available on Unix and Windows.

= The parent process starts a fresh/empty process.

» Code & data needs to copied onto the new child process

= Can be scaled to multiple machines/cluster.

GBS i
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Multi-Processing - Load Balancing

Master/Worker Approach No distribution Dynamic balancer/scheduler
= Better work distribution

= Low Overhead

= More overhead

= Bad load balance.

GBS i
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Multi-Processing - Splitting Data

Passing only data “chucks” to each worker Big chunks are generally better than little chunks

for (i in 1:10) {
for (j in 1:1000000) {

Worker 1 Worker 2 G e e i mrk
Threads Threads
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Distributed Computing on HPC

Distributed Memory Parallelism (Distributed Computing)
= Multiple machines with its own private memory. Workers

= Message Passing Interface (MPI)

» Host schedules the work across the workers

pr— Main Memory

Host

HPC Job Schedulers:
= Portable Batch System (PBS)
= Simple Linux Utility for Resource Management (SLURM)

= |BM Spectrum LSF Main Memory Network Main Memory

= Sun Grid Engine (SGE)

Main Memory

GBS i
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Python Libraries - Overview

Built-in Libraries

» Threading
* Multiprocessing

= concurrent.futures

Compilers
» Numba

GBS i

Parallelization Libraries

Joblib
Loky
Ipyparallel
Ray

Dask

Al/ML Frameworks

= Pytorch (torch.multiprocessing ,torch.distributed)

Scikit-Learn

Tensorflow

24



[terations

There are two styles of iterations

for 1 in range(3):

np.sqrt(i)

for and while loops
= Itis often the most intuitive way to begin.

= Imperative programming .

f( )
functional programming £( )
= Readability & code redundancy map( » £ |:>

f( )
= Functionals are a functions that takes a function as an input and returns a

vector as output. T( )

= E.g. apply() or map()
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Python Library - Mumba

import numba

@numba.jit
. . ) def my_ function(x):
Numba a dynamic just-in-time (JIT) compiler. Y= X %K D 40 % x4

return y

Write a pure Python function which can be JIT compiled to

native machine instructions. FESUIE = liny UnEEen()

print(result)

Similar in performance to C, C++ and Fortran, by simply

adding the decorator @jit in your function. import math

import numba
import GPUtil

@jit compilation adds overhead to the runtime of the

function (first time it is run). def £(x,y):
return math.pow(x, ) + 4*math.sin(y)

CPU and GPU support.

@numba.vectorize([numba.float64(numba.float64, numba.float64)], target="cpu')
def f_numba_cpu(x,y):
return math.pow(x, ) + 4*math.sin(y)

if GPUtil.getAvailable():
@numba.vectorize([numba.float64(numba.float64, numba.float64)],
target="cuda')
def f_numba_gpu(x,y):

ch i‘! return math.pow(x, ) + 4*math.sin(y)
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Python Library - 7hreading

Multi-theading

Concurrent not parallel - subject to the GIL

Can increase speed for I/O-bound applications.

Single-machine

Functions:
= Thread()
= start()

= _join()

GBS i

import threading as th
def print_cube(num):
print("Cube: {}" .format(num * num * num))
def print_square(num):
print("Square: {}" .format(num * num))
if name__ =="_ main__ ":

tl = th.Thread(target=print_square, args=(10,))

t2 = th.Thread(target=print_cube, args=(10,))

.start()

.start()

t1.join()

t2.join()

print("Done!")
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Python Library - Multiprocessing

Methods:
» ‘spawn’
= ‘fork’

» Single-machine

Functions:

P = mp.Process(target=x, args=y)
P.start()

P.join()

GBS i

import multiprocessing as mp

def print_cube(num):

print("Cube: {}" .format(num * num * num))

def print_square(num):
print("Square: {}" .format(num * num))

if _name__ =="_main__ ":
mp.set_start _method('spawn')

pl = mp.Process(target=print_square, args=(19,))
p2 = mp.Process(target=print_cube, args=(19,))

pl.start()

p2.start()

pl.join()

p2.join()

print("Done!")
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Python Library - Multiprocessing

Creating a worker pool:

myPool = Pool(nworkers)

Functions:

myPool.apply()
myPool.apply_async()

myPool.map()
myPool.map_async()
myPool.imap()
myPool.imap_unordered()
myPool.starmap()

myPool.starmap_async()

GBS i

import multiprocessing as mp

def print cube(num):

print("Cube: {}" .format(num * num * num))

) ) ]

if name_ == "' main_ ':
mp.set start method('spawn')

mypool = mp.Pool(processes=4)
value = mypool.map(print_cube,X)

if __name__ == '__main__':
mp.set_start_method('spawn")

with mp.Pool(processes=i) as mypool:
value = mypool.map(cube, X)

40



Python Library - concurrent futures

executor = ThreadPoolExecutor(max_workers=10)

executor ProcessPoolExecutor(max_workers=10)

Multiprocessing Pool vs ProcessPoolExecutor

executor.submit(task, item)

https://superfastpython.com/multiprocessing-pool-vs-
processpoolexecutor/ future.result()

executor.shutdown()
ThreadPoolExecutor vs. Thread

https://superfastpython.com/threadpoolexecutor-vs-
threads/#Similarities Between ThreadPoolExecutor and Thread

with ThreadPoolExecutor(max_workers=10) as executor:

for result in executor.map(task, items):

Concurrent not parallel- subject to the GIL

GBS i
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https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/multiprocessing-pool-vs-processpoolexecutor/
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread
https://superfastpython.com/threadpoolexecutor-vs-threads/#Similarities_Between_ThreadPoolExecutor_and_Thread

Python Library - Scikit-Learn

Depending on the type of estimator parallelism:

OpenMP:

Is used to parallelize code written in Cython or C, relying on multi-
threading exclusively. By default, the implementations using OpenMP will
use as many threads as possible, i.e. as many threads as logical cores.

MKL, OpenBLAS or BLIS:

Scikit-learn relies heavily on NumPy and SciPy, which internally call
multi-threaded linear algebra routines (BLAS & LAPACK) implemented
in libraries such as MKL, OpenBLAS or BLIS.

from joblib import parallel backend

joblib backends:  PASFEEN

with
with
with
with
with
with

GBS -

parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('
parallel backend('

loky'):
mulitprocessing'):
dask'):

ray'):
ipyparallel'):
threading'):
spark"'):

OMP_NUM_THREADS=4 python my_script.py

MKL_NUM_THREADS
OPENBLAS_NUM_THREADS
BLIS_NUM_THREADS

32



Scikit-Learn - joblib backends

with parallel backend('multiprocessing',n_jobs=2):
search.fit(digits.data,digits.target)

import numpy as np

from joblib import parallel backend

from sklearn.datasets import load_digits

from sklearn.model selection import RandomizedSearchCV
from sklearn.svm import SVC

param_space = {
'C': np.logspace(-6, 6, )>

with parallel backend('multiprocessing',n_jobs=16):

BRI 8 P ISREpacel vy o ) search.fit(digits.data,digits.target)

'tol': np.logspace(-4, , )
‘class_weight': [None, 'balanced'],

}

model = SVC(kernel='rbf')
search = RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits = load_digits() with parallel backend('loky',n_jobs=16):

search.fit(digits.data,digits.target)

Training: 0 Training: 1 Training: 2 Training: 3

' with parallel backend('threading',n_jobs=
search.fit(digits.data,digits.target)

GBS i
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Scikit-Learn - Ray

import numpy as np import ray

from joblib import parallel backend from ray.util.joblib import register_ray
from sklearn.datasets import load_digits

from sklearn.model selection import RandomizedSearchCV

from sklearn.svm import SVC ray.init(num_cpus=16)

param_space = { register_ray()

'C': np.logspace(-6, 6, )

‘gamma': np.logspace(-3, 8, )

'tol': np.logspace(-4, P )s with parallel backend('ray’):
‘class_weight': [None, 'balanced'], search.fit(digits.data,digits.target)
}

model = SVC(kernel='rbf")
search RandomizedSearchCV(model, param_space, cv=10, n_iter=5,verbose=1)
digits load_digits()
ray.shutdown()

GBS i
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Distributed Computing on UCloud (SLURM cluster)

Scikit-Learn — Ray

import ray
from joblib import parallel_backend
from sklearn.datasets import load_digits

from sklearn.model_selection import RandomizedSearchCV

from sklearn.svm import SVC
from ray.util.joblib import register_ray
register_ray()

param_space = {
'C': np.logspace(-6, 6, )
‘gamma‘’: np.logspace(-3, 8, )
"tol': np.logspace(-4, , )
‘class_weight': [None, 'balanced'],

}

model = SVC(kernel='rbf"')
search = RandomizedSearchCV(model, param_space, cv=
digits = load_digits()

ray.init(address="auto")
with parallel backend('ray’):
search.fit(digits.data,digits.target)

ray.shutdown()

GBS i

, h_iter=

,verbose=1)

https://cbs-

hpc.github.io/Tutorials/SLURM/SLURM/

https://cloud.sdu.dk/app/jobs/pro

perties/792600?app=
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https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cloud.sdu.dk/app/jobs/properties/792600?app=
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
https://cbs-hpc.github.io/Tutorials/SLURM/SLURM/
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